LCOV - code coverage report
Current view: top level - alg/viewshed - viewshed_executor.cpp (source / functions) Hit Total Coverage
Test: gdal_filtered.info Lines: 405 461 87.9 %
Date: 2025-08-01 10:10:57 Functions: 36 40 90.0 %

          Line data    Source code
       1             : /******************************************************************************
       2             :  *
       3             :  * Project:  Viewshed Generation
       4             :  * Purpose:  Core algorithm implementation for viewshed generation.
       5             :  * Author:   Tamas Szekeres, szekerest@gmail.com
       6             :  *
       7             :  * (c) 2024 info@hobu.co
       8             :  *
       9             :  ******************************************************************************
      10             :  *
      11             :  * SPDX-License-Identifier: MIT
      12             :  ****************************************************************************/
      13             : 
      14             : #include <algorithm>
      15             : #include <atomic>
      16             : #include <cassert>
      17             : #include <cmath>
      18             : #include <limits>
      19             : 
      20             : #include "viewshed_executor.h"
      21             : #include "progress.h"
      22             : #include "util.h"
      23             : 
      24             : namespace gdal
      25             : {
      26             : namespace viewshed
      27             : {
      28             : 
      29             : namespace
      30             : {
      31             : 
      32             : /// Determines whether a value is a valid intersection coordinate.
      33             : /// @param  i  Value to test.
      34             : /// @return  True if the value doesn't represent an invalid intersection.
      35          78 : bool valid(int i)
      36             : {
      37          78 :     return i != INVALID_ISECT;
      38             : }
      39             : 
      40             : /// Determines whether a value is an invalid intersection coordinate.
      41             : /// @param  i  Value to test.
      42             : /// @return  True if the value represents an invalid intersection.
      43          78 : bool invalid(int i)
      44             : {
      45          78 :     return !valid(i);
      46             : }
      47             : 
      48             : /// Calculate the height at nDistance units along a line through the origin given the height
      49             : /// at nDistance - 1 units along the line.
      50             : /// \param nDistance  Distance along the line for the target point.
      51             : /// \param Za  Height at the line one unit previous to the target point.
      52       79714 : double CalcHeightLine(int nDistance, double Za)
      53             : {
      54       79714 :     nDistance = std::abs(nDistance);
      55       79714 :     assert(nDistance != 1);
      56       79714 :     return Za * nDistance / (nDistance - 1);
      57             : }
      58             : 
      59             : // Calculate the height Zc of a point (i, j, Zc) given a line through the origin (0, 0, 0)
      60             : // and passing through the line connecting (i - 1, j, Za) and (i, j - 1, Zb).
      61             : // In other words, the origin and the two points form a plane and we're calculating Zc
      62             : // of the point (i, j, Zc), also on the plane.
      63           0 : double CalcHeightDiagonal(int i, int j, double Za, double Zb)
      64             : {
      65           0 :     return (Za * i + Zb * j) / (i + j - 1);
      66             : }
      67             : 
      68             : // Calculate the height Zc of a point (i, j, Zc) given a line through the origin (0, 0, 0)
      69             : // and through the line connecting (i -1, j - 1, Za) and (i - 1, j, Zb). In other words,
      70             : // the origin and the other two points form a plane and we're calculating Zc of the
      71             : // point (i, j, Zc), also on the plane.
      72     2822740 : double CalcHeightEdge(int i, int j, double Za, double Zb)
      73             : {
      74     2822740 :     assert(i != j);
      75     2822740 :     return (Za * i + Zb * (j - i)) / (j - 1);
      76             : }
      77             : 
      78           0 : double doDiagonal(int nXOffset, [[maybe_unused]] int nYOffset,
      79             :                   double dfThisPrev, double dfLast,
      80             :                   [[maybe_unused]] double dfLastPrev)
      81             : {
      82           0 :     return CalcHeightDiagonal(nXOffset, nYOffset, dfThisPrev, dfLast);
      83             : }
      84             : 
      85     2818240 : double doEdge(int nXOffset, int nYOffset, double dfThisPrev, double dfLast,
      86             :               double dfLastPrev)
      87             : {
      88     2818240 :     if (nXOffset >= nYOffset)
      89     1167790 :         return CalcHeightEdge(nYOffset, nXOffset, dfLastPrev, dfThisPrev);
      90             :     else
      91     1650450 :         return CalcHeightEdge(nXOffset, nYOffset, dfLastPrev, dfLast);
      92             : }
      93             : 
      94           0 : double doMin(int nXOffset, int nYOffset, double dfThisPrev, double dfLast,
      95             :              double dfLastPrev)
      96             : {
      97           0 :     double dfEdge = doEdge(nXOffset, nYOffset, dfThisPrev, dfLast, dfLastPrev);
      98             :     double dfDiagonal =
      99           0 :         doDiagonal(nXOffset, nYOffset, dfThisPrev, dfLast, dfLastPrev);
     100           0 :     return std::min(dfEdge, dfDiagonal);
     101             : }
     102             : 
     103           0 : double doMax(int nXOffset, int nYOffset, double dfThisPrev, double dfLast,
     104             :              double dfLastPrev)
     105             : {
     106           0 :     double dfEdge = doEdge(nXOffset, nYOffset, dfThisPrev, dfLast, dfLastPrev);
     107             :     double dfDiagonal =
     108           0 :         doDiagonal(nXOffset, nYOffset, dfThisPrev, dfLast, dfLastPrev);
     109           0 :     return std::max(dfEdge, dfDiagonal);
     110             : }
     111             : 
     112             : }  // unnamed namespace
     113             : 
     114             : /// Constructor - the viewshed algorithm executor
     115             : /// @param srcBand  Source raster band
     116             : /// @param dstBand  Destination raster band
     117             : /// @param nX  X position of observer
     118             : /// @param nY  Y position of observer
     119             : /// @param outExtent  Extent of output raster (relative to input)
     120             : /// @param curExtent  Extent of active raster.
     121             : /// @param opts  Configuration options.
     122             : /// @param progress  Reference to the progress tracker.
     123             : /// @param emitWarningIfNoData  Whether a warning must be emitted if an input
     124             : ///                             pixel is at the nodata value.
     125         235 : ViewshedExecutor::ViewshedExecutor(GDALRasterBand &srcBand,
     126             :                                    GDALRasterBand &dstBand, int nX, int nY,
     127             :                                    const Window &outExtent,
     128             :                                    const Window &curExtent, const Options &opts,
     129         235 :                                    Progress &progress, bool emitWarningIfNoData)
     130             :     : m_pool(4), m_srcBand(srcBand), m_dstBand(dstBand),
     131             :       m_emitWarningIfNoData(emitWarningIfNoData), oOutExtent(outExtent),
     132         235 :       oCurExtent(curExtent), m_nX(nX - oOutExtent.xStart), m_nY(nY),
     133             :       oOpts(opts), oProgress(progress),
     134         235 :       m_dfMinDistance2(opts.minDistance * opts.minDistance),
     135         235 :       m_dfMaxDistance2(opts.maxDistance * opts.maxDistance)
     136             : {
     137         235 :     if (m_dfMaxDistance2 == 0)
     138         232 :         m_dfMaxDistance2 = std::numeric_limits<double>::max();
     139         235 :     if (opts.lowPitch != -90.0)
     140           1 :         m_lowTanPitch = std::tan(oOpts.lowPitch * (2 * M_PI / 360.0));
     141         235 :     if (opts.highPitch != 90.0)
     142           1 :         m_highTanPitch = std::tan(oOpts.highPitch * (2 * M_PI / 360.0));
     143         235 :     m_srcBand.GetDataset()->GetGeoTransform(m_gt);
     144         235 :     int hasNoData = false;
     145         235 :     m_noDataValue = m_srcBand.GetNoDataValue(&hasNoData);
     146         235 :     m_hasNoData = hasNoData;
     147         235 : }
     148             : 
     149             : // calculate the height adjustment factor.
     150         235 : double ViewshedExecutor::calcHeightAdjFactor()
     151             : {
     152         470 :     std::lock_guard g(oMutex);
     153             : 
     154             :     const OGRSpatialReference *poDstSRS =
     155         235 :         m_dstBand.GetDataset()->GetSpatialRef();
     156             : 
     157         235 :     if (poDstSRS)
     158             :     {
     159             :         OGRErr eSRSerr;
     160             : 
     161             :         // If we can't get a SemiMajor axis from the SRS, it will be SRS_WGS84_SEMIMAJOR
     162          12 :         double dfSemiMajor = poDstSRS->GetSemiMajor(&eSRSerr);
     163             : 
     164             :         /* If we fetched the axis from the SRS, use it */
     165          12 :         if (eSRSerr != OGRERR_FAILURE)
     166          12 :             return oOpts.curveCoeff / (dfSemiMajor * 2.0);
     167             : 
     168           0 :         CPLDebug("GDALViewshedGenerate",
     169             :                  "Unable to fetch SemiMajor axis from spatial reference");
     170             :     }
     171         223 :     return 0;
     172             : }
     173             : 
     174             : /// Set the output Z value depending on the observable height and computation mode.
     175             : ///
     176             : /// dfResult  Reference to the result cell
     177             : /// dfCellVal  Reference to the current cell height. Replace with observable height.
     178             : /// dfZ  Minimum observable height at cell.
     179     2888150 : void ViewshedExecutor::setOutput(double &dfResult, double &dfCellVal,
     180             :                                  double dfZ)
     181             : {
     182     2888150 :     if (oOpts.outputMode != OutputMode::Normal)
     183             :     {
     184       28621 :         double adjustment = dfZ - dfCellVal;
     185       28621 :         if (adjustment > 0)
     186       15582 :             dfResult += adjustment;
     187             :     }
     188             :     else
     189     2859530 :         dfResult = (dfCellVal + oOpts.targetHeight < dfZ) ? oOpts.invisibleVal
     190             :                                                           : oOpts.visibleVal;
     191     2888150 :     dfCellVal = std::max(dfCellVal, dfZ);
     192     2889660 : }
     193             : 
     194             : /// Read a line of raster data.
     195             : ///
     196             : /// @param  nLine  Line number to read.
     197             : /// @param  data  Pointer to location in which to store data.
     198             : /// @return  Success or failure.
     199       28911 : bool ViewshedExecutor::readLine(int nLine, double *data)
     200             : {
     201       57768 :     std::lock_guard g(iMutex);
     202             : 
     203       28932 :     if (GDALRasterIO(&m_srcBand, GF_Read, oOutExtent.xStart, nLine,
     204             :                      oOutExtent.xSize(), 1, data, oOutExtent.xSize(), 1,
     205       28857 :                      GDT_Float64, 0, 0))
     206             :     {
     207           0 :         CPLError(CE_Failure, CPLE_AppDefined,
     208             :                  "RasterIO error when reading DEM at position (%d,%d), "
     209             :                  "size (%d,%d)",
     210           0 :                  oOutExtent.xStart, nLine, oOutExtent.xSize(), 1);
     211           0 :         return false;
     212             :     }
     213       28857 :     return true;
     214             : }
     215             : 
     216             : /// Write an output line of either visibility or height data.
     217             : ///
     218             : /// @param  nLine  Line number being written.
     219             : /// @param vResult  Result line to write.
     220             : /// @return  True on success, false otherwise.
     221       28859 : bool ViewshedExecutor::writeLine(int nLine, std::vector<double> &vResult)
     222             : {
     223             :     // GDALRasterIO isn't thread-safe.
     224       57673 :     std::lock_guard g(oMutex);
     225             : 
     226       57577 :     if (GDALRasterIO(&m_dstBand, GF_Write, 0, nLine - oOutExtent.yStart,
     227       28804 :                      oOutExtent.xSize(), 1, vResult.data(), oOutExtent.xSize(),
     228       28814 :                      1, GDT_Float64, 0, 0))
     229             :     {
     230           0 :         CPLError(CE_Failure, CPLE_AppDefined,
     231             :                  "RasterIO error when writing target raster at position "
     232             :                  "(%d,%d), size (%d,%d)",
     233           0 :                  0, nLine - oOutExtent.yStart, oOutExtent.xSize(), 1);
     234           0 :         return false;
     235             :     }
     236       28814 :     return true;
     237             : }
     238             : 
     239             : /// Adjust the height of the line of data by the observer height and the curvature of the
     240             : /// earth.
     241             : ///
     242             : /// @param  nYOffset  Y offset of the line being adjusted.
     243             : /// @param  vThisLineVal  Line height data.
     244             : /// @param  vPitchMaskVal  Pitch masking line.
     245             : /// @return  Processing limits of the line based on min/max distance.
     246       28845 : LineLimits ViewshedExecutor::adjustHeight(int nYOffset,
     247             :                                           std::vector<double> &vThisLineVal,
     248             :                                           std::vector<double> &vPitchMaskVal)
     249             : {
     250       28845 :     LineLimits ll(0, m_nX + 1, m_nX + 1, oCurExtent.xSize());
     251             : 
     252             :     // Find the starting point in the raster (m_nX may be outside)
     253       28748 :     int nXStart = oCurExtent.clampX(m_nX);
     254             : 
     255     5803540 :     const auto CheckNoData = [this](double val)
     256             :     {
     257     5800360 :         if (!m_hasFoundNoData &&
     258     2904350 :             ((m_hasNoData && val == m_noDataValue) || std::isnan(val)))
     259             :         {
     260           0 :             m_hasFoundNoData = true;
     261           0 :             if (m_emitWarningIfNoData)
     262             :             {
     263           0 :                 CPLError(CE_Warning, CPLE_AppDefined,
     264             :                          "Nodata value found in input DEM. Output will be "
     265             :                          "likely incorrect");
     266             :             }
     267             :         }
     268     2924730 :     };
     269             : 
     270             :     // If there is a height adjustment factor other than zero or a max distance,
     271             :     // calculate the adjusted height of the cell, stopping if we've exceeded the max
     272             :     // distance.
     273       27339 :     if (static_cast<bool>(m_dfHeightAdjFactor) || oOpts.pitchMasking() ||
     274       56120 :         m_dfMaxDistance2 > 0 || m_dfMinDistance2 > 0)
     275             :     {
     276             :         // Hoist invariants from the loops.
     277       28733 :         const double dfLineX = m_gt[2] * nYOffset;
     278       28733 :         const double dfLineY = m_gt[5] * nYOffset;
     279             : 
     280             :         // Go left
     281       28731 :         double *pdfHeight = vThisLineVal.data() + nXStart;
     282     1483710 :         for (int nXOffset = nXStart - m_nX; nXOffset >= -m_nX;
     283             :              nXOffset--, pdfHeight--)
     284             :         {
     285     1454740 :             double dfX = m_gt[1] * nXOffset + dfLineX;
     286     1453690 :             double dfY = m_gt[4] * nXOffset + dfLineY;
     287     1458340 :             double dfR2 = dfX * dfX + dfY * dfY;
     288             : 
     289     1458340 :             if (dfR2 < m_dfMinDistance2)
     290           6 :                 ll.leftMin--;
     291     1458330 :             else if (dfR2 > m_dfMaxDistance2)
     292             :             {
     293          26 :                 ll.left = nXOffset + m_nX + 1;
     294          26 :                 break;
     295             :             }
     296             : 
     297     1458310 :             CheckNoData(*pdfHeight);
     298     1454880 :             *pdfHeight -= m_dfHeightAdjFactor * dfR2 + m_dfZObserver;
     299     1454880 :             if (oOpts.pitchMasking())
     300          75 :                 calcPitchMask(*pdfHeight, std::sqrt(dfR2),
     301          75 :                               vPitchMaskVal[m_nX + nXOffset]);
     302             :         }
     303             : 
     304             :         // Go right.
     305       29005 :         pdfHeight = vThisLineVal.data() + nXStart + 1;
     306     1495350 :         for (int nXOffset = nXStart - m_nX + 1;
     307     1495350 :              nXOffset < oCurExtent.xSize() - m_nX; nXOffset++, pdfHeight++)
     308             :         {
     309     1464740 :             double dfX = m_gt[1] * nXOffset + dfLineX;
     310     1463440 :             double dfY = m_gt[4] * nXOffset + dfLineY;
     311     1470180 :             double dfR2 = dfX * dfX + dfY * dfY;
     312             : 
     313     1470180 :             if (dfR2 < m_dfMinDistance2)
     314           3 :                 ll.rightMin++;
     315     1470180 :             else if (dfR2 > m_dfMaxDistance2)
     316             :             {
     317          26 :                 ll.right = nXOffset + m_nX;
     318          26 :                 break;
     319             :             }
     320             : 
     321     1470160 :             CheckNoData(*pdfHeight);
     322     1463420 :             *pdfHeight -= m_dfHeightAdjFactor * dfR2 + m_dfZObserver;
     323     1463420 :             if (oOpts.pitchMasking())
     324         175 :                 calcPitchMask(*pdfHeight, std::sqrt(dfR2),
     325         175 :                               vPitchMaskVal[m_nX + nXOffset]);
     326             :         }
     327             :     }
     328             :     else
     329             :     {
     330             :         // No curvature adjustment. Just normalize for the observer height.
     331          48 :         double *pdfHeight = vThisLineVal.data();
     332           0 :         for (int i = 0; i < oCurExtent.xSize(); ++i)
     333             :         {
     334           1 :             CheckNoData(*pdfHeight);
     335           0 :             *pdfHeight -= m_dfZObserver;
     336           0 :             pdfHeight++;
     337             :         }
     338             :     }
     339       28935 :     return ll;
     340             : }
     341             : 
     342         250 : void ViewshedExecutor::calcPitchMask(double dfZ, double dfDist, double &maskVal)
     343             : {
     344         250 :     if (oOpts.lowPitchMasking())
     345             :     {
     346          25 :         double dfZMask = dfDist * m_lowTanPitch;
     347          25 :         double adjustment = dfZMask - dfZ;
     348          25 :         if (adjustment > 0)
     349             :         {
     350          24 :             maskVal =
     351          24 :                 (oOpts.outputMode == OutputMode::Normal ? oOpts.outOfRangeVal
     352             :                                                         : adjustment);
     353          24 :             return;
     354             :         }
     355             :     }
     356         226 :     if (oOpts.highPitchMasking())
     357             :     {
     358         225 :         double dfZMask = dfDist * m_highTanPitch;
     359         225 :         if (dfZ > dfZMask)
     360           7 :             maskVal = oOpts.outOfRangeVal;
     361             :     }
     362             : }
     363             : 
     364             : /// Process the first line (the one with the Y coordinate the same as the observer).
     365             : ///
     366             : /// @param vLastLineVal  Vector in which to store the read line. Becomes the last line
     367             : ///    in further processing.
     368             : /// @return True on success, false otherwise.
     369         235 : bool ViewshedExecutor::processFirstLine(std::vector<double> &vLastLineVal)
     370             : {
     371         235 :     int nLine = oOutExtent.clampY(m_nY);
     372         235 :     int nYOffset = nLine - m_nY;
     373             : 
     374         470 :     std::vector<double> vResult(oOutExtent.xSize());
     375         470 :     std::vector<double> vThisLineVal(oOutExtent.xSize());
     376         470 :     std::vector<double> vPitchMaskVal;
     377         235 :     if (oOpts.pitchMasking())
     378           2 :         vPitchMaskVal.resize(oOutExtent.xSize(),
     379           4 :                              std::numeric_limits<double>::quiet_NaN());
     380             : 
     381         235 :     if (!readLine(nLine, vThisLineVal.data()))
     382           0 :         return false;
     383             : 
     384             :     // If the observer is outside of the raster, take the specified value as the Z height,
     385             :     // otherwise, take it as an offset from the raster height at that location.
     386         235 :     m_dfZObserver = oOpts.observer.z;
     387         235 :     if (oCurExtent.containsX(m_nX))
     388             :     {
     389         229 :         m_dfZObserver += vThisLineVal[m_nX];
     390         229 :         if (oOpts.outputMode == OutputMode::Normal)
     391         212 :             vResult[m_nX] = oOpts.visibleVal;
     392             :     }
     393         235 :     m_dfHeightAdjFactor = calcHeightAdjFactor();
     394             : 
     395             :     // In DEM mode the base is the pre-adjustment value.  In ground mode the base is zero.
     396         235 :     if (oOpts.outputMode == OutputMode::DEM)
     397          16 :         vResult = vThisLineVal;
     398             : 
     399         235 :     LineLimits ll = adjustHeight(nYOffset, vThisLineVal, vPitchMaskVal);
     400         235 :     if (oCurExtent.containsX(m_nX) && ll.leftMin != ll.rightMin)
     401           1 :         vResult[m_nX] = oOpts.outOfRangeVal;
     402             : 
     403         235 :     if (!oCurExtent.containsY(m_nY))
     404           4 :         processFirstLineTopOrBottom(ll, vResult, vThisLineVal);
     405             :     else
     406             :     {
     407         462 :         CPLJobQueuePtr pQueue = m_pool.CreateJobQueue();
     408         231 :         pQueue->SubmitJob([&]()
     409         231 :                           { processFirstLineLeft(ll, vResult, vThisLineVal); });
     410         231 :         pQueue->SubmitJob(
     411         231 :             [&]() { processFirstLineRight(ll, vResult, vThisLineVal); });
     412         231 :         pQueue->WaitCompletion();
     413             :     }
     414             : 
     415             :     // Make the current line the last line.
     416         235 :     vLastLineVal = std::move(vThisLineVal);
     417             : 
     418         235 :     if (oOpts.pitchMasking())
     419           2 :         applyPitchMask(vResult, vPitchMaskVal);
     420         235 :     if (!writeLine(nLine, vResult))
     421           0 :         return false;
     422             : 
     423         235 :     return oProgress.lineComplete();
     424             : }
     425             : 
     426          20 : void ViewshedExecutor::applyPitchMask(std::vector<double> &vResult,
     427             :                                       const std::vector<double> &vPitchMaskVal)
     428             : {
     429         270 :     for (size_t i = 0; i < vResult.size(); ++i)
     430             :     {
     431         250 :         if (std::isnan(vPitchMaskVal[i]))
     432         219 :             continue;
     433          31 :         if (vPitchMaskVal[i] == oOpts.outOfRangeVal)
     434           7 :             vResult[i] = oOpts.outOfRangeVal;
     435             :         else
     436          24 :             vResult[i] += vPitchMaskVal[i];
     437             :     }
     438          20 : }
     439             : 
     440             : // If the observer is above or below the raster, set all cells in the first line near the
     441             : // observer as observable provided they're in range. Mark cells out of range as such.
     442             : /// @param  ll  Line limits for processing.
     443             : /// @param  vResult  Result line.
     444             : /// @param  vThisLineVal  Heights of the cells in the target line
     445           4 : void ViewshedExecutor::processFirstLineTopOrBottom(
     446             :     const LineLimits &ll, std::vector<double> &vResult,
     447             :     std::vector<double> &vThisLineVal)
     448             : {
     449           4 :     double *pResult = vResult.data() + ll.left;
     450           4 :     double *pThis = vThisLineVal.data() + ll.left;
     451          24 :     for (int iPixel = ll.left; iPixel < ll.right; ++iPixel, ++pResult, pThis++)
     452             :     {
     453          20 :         if (oOpts.outputMode == OutputMode::Normal)
     454           0 :             *pResult = oOpts.visibleVal;
     455             :         else
     456          20 :             setOutput(*pResult, *pThis, *pThis);
     457             :     }
     458             : 
     459           4 :     std::fill(vResult.begin(), vResult.begin() + ll.left, oOpts.outOfRangeVal);
     460           4 :     std::fill(vResult.begin() + ll.right, vResult.begin() + oCurExtent.xStop,
     461           4 :               oOpts.outOfRangeVal);
     462           4 : }
     463             : 
     464             : /// Process the part of the first line to the left of the observer.
     465             : ///
     466             : /// @param ll  Line limits for masking.
     467             : /// @param vResult  Vector in which to store the visibility/height results.
     468             : /// @param vThisLineVal  Height of each cell in the line being processed.
     469         231 : void ViewshedExecutor::processFirstLineLeft(const LineLimits &ll,
     470             :                                             std::vector<double> &vResult,
     471             :                                             std::vector<double> &vThisLineVal)
     472             : {
     473         231 :     int iEnd = ll.left - 1;
     474         231 :     int iStart = m_nX - 1;  // One left of the observer.
     475             : 
     476             :     // If end is to the right of start, everything is taken care of by right processing.
     477         231 :     if (iEnd >= iStart)
     478          30 :         return;
     479             : 
     480         201 :     iStart = oCurExtent.clampX(iStart);
     481             : 
     482         201 :     double *pThis = vThisLineVal.data() + iStart;
     483             : 
     484             :     // If the start cell is next to the observer, just mark it visible.
     485         201 :     if (iStart + 1 == m_nX || iStart + 1 == oCurExtent.xStop)
     486             :     {
     487         201 :         double dfZ = *pThis;
     488         201 :         if (oOpts.outputMode == OutputMode::Normal)
     489         190 :             vResult[iStart] = oOpts.visibleVal;
     490             :         else
     491          11 :             setOutput(vResult[iStart], *pThis, dfZ);
     492         201 :         iStart--;
     493         201 :         pThis--;
     494             :     }
     495             : 
     496             :     // Go from the observer to the left, calculating Z as we go.
     497       10357 :     for (int iPixel = iStart; iPixel > iEnd; iPixel--, pThis--)
     498             :     {
     499       10156 :         int nXOffset = std::abs(iPixel - m_nX);
     500       10156 :         double dfZ = CalcHeightLine(nXOffset, *(pThis + 1));
     501       10156 :         setOutput(vResult[iPixel], *pThis, dfZ);
     502             :     }
     503             : 
     504         201 :     maskLineLeft(vResult, ll, m_nY);
     505             : }
     506             : 
     507             : /// Mask cells based on angle intersection to the left of the observer.
     508             : ///
     509             : /// @param vResult  Result raaster line.
     510             : /// @param nLine  Line number.
     511             : /// @return  True when all cells have been masked.
     512       25946 : bool ViewshedExecutor::maskAngleLeft(std::vector<double> &vResult, int nLine)
     513             : {
     514          38 :     auto clamp = [this](int x)
     515          20 :     { return (x < 0 || x >= m_nX) ? INVALID_ISECT : x; };
     516             : 
     517       25946 :     if (!oOpts.angleMasking())
     518       25906 :         return false;
     519             : 
     520          11 :     if (nLine != m_nY)
     521             :     {
     522             :         int startAngleX =
     523          10 :             clamp(hIntersect(oOpts.startAngle, m_nX, m_nY, nLine));
     524          10 :         int endAngleX = clamp(hIntersect(oOpts.endAngle, m_nX, m_nY, nLine));
     525             :         // If neither X intersect is in the quadrant and a ray in the quadrant isn't
     526             :         // between start and stop, fill it all and return true.  If it is in between
     527             :         // start and stop, we're done.
     528          10 :         if (invalid(startAngleX) && invalid(endAngleX))
     529             :         {
     530             :             // Choose a test angle in quadrant II or III depending on the line.
     531           7 :             double testAngle = nLine < m_nY ? m_testAngle[2] : m_testAngle[3];
     532           7 :             if (!rayBetween(oOpts.startAngle, oOpts.endAngle, testAngle))
     533             :             {
     534           2 :                 std::fill(vResult.begin(), vResult.begin() + m_nX,
     535           2 :                           oOpts.outOfRangeVal);
     536           7 :                 return true;
     537             :             }
     538           5 :             return false;
     539             :         }
     540           3 :         if (nLine > m_nY)
     541           0 :             std::swap(startAngleX, endAngleX);
     542           3 :         if (invalid(startAngleX))
     543           3 :             startAngleX = 0;
     544           3 :         if (invalid(endAngleX))
     545           0 :             endAngleX = m_nX - 1;
     546           3 :         if (startAngleX <= endAngleX)
     547             :         {
     548           3 :             std::fill(vResult.begin(), vResult.begin() + startAngleX,
     549           3 :                       oOpts.outOfRangeVal);
     550           3 :             std::fill(vResult.begin() + endAngleX + 1, vResult.begin() + m_nX,
     551           3 :                       oOpts.outOfRangeVal);
     552             :         }
     553             :         else
     554             :         {
     555           0 :             std::fill(vResult.begin() + endAngleX + 1,
     556           0 :                       vResult.begin() + startAngleX, oOpts.outOfRangeVal);
     557             :         }
     558             :     }
     559             :     // nLine == m_nY
     560           1 :     else if (!rayBetween(oOpts.startAngle, oOpts.endAngle, M_PI))
     561             :     {
     562           0 :         std::fill(vResult.begin(), vResult.begin() + m_nX, oOpts.outOfRangeVal);
     563           0 :         return true;
     564             :     }
     565           4 :     return false;
     566             : }
     567             : 
     568             : /// Mask cells based on angle intersection to the right of the observer.
     569             : ///
     570             : /// @param vResult  Result raaster line.
     571             : /// @param nLine  Line number.
     572             : /// @return  True when all cells have been masked.
     573       28911 : bool ViewshedExecutor::maskAngleRight(std::vector<double> &vResult, int nLine)
     574             : {
     575       28911 :     int lineLength = static_cast<int>(vResult.size());
     576             : 
     577          54 :     auto clamp = [this, lineLength](int x)
     578          36 :     { return (x <= m_nX || x >= lineLength) ? INVALID_ISECT : x; };
     579             : 
     580       28912 :     if (oOpts.startAngle == oOpts.endAngle)
     581       28894 :         return false;
     582             : 
     583          18 :     if (nLine != m_nY)
     584             :     {
     585             :         int startAngleX =
     586          18 :             clamp(hIntersect(oOpts.startAngle, m_nX, m_nY, nLine));
     587          18 :         int endAngleX = clamp(hIntersect(oOpts.endAngle, m_nX, m_nY, nLine));
     588             : 
     589             :         // If neither X intersect is in the quadrant and a ray in the quadrant isn't
     590             :         // between start and stop, fill it all and return true.  If it is in between
     591             :         // start and stop, we're done.
     592          18 :         if (invalid(startAngleX) && invalid(endAngleX))
     593             :         {
     594             :             // Choose a test angle in quadrant I or IV depending on the line.
     595          10 :             double testAngle = nLine < m_nY ? m_testAngle[1] : m_testAngle[4];
     596          10 :             if (!rayBetween(oOpts.startAngle, oOpts.endAngle, testAngle))
     597             :             {
     598           0 :                 std::fill(vResult.begin() + m_nX + 1, vResult.end(),
     599           0 :                           oOpts.outOfRangeVal);
     600          10 :                 return true;
     601             :             }
     602          10 :             return false;
     603             :         }
     604             : 
     605           8 :         if (nLine > m_nY)
     606           0 :             std::swap(startAngleX, endAngleX);
     607           8 :         if (invalid(endAngleX))
     608           0 :             endAngleX = lineLength - 1;
     609           8 :         if (invalid(startAngleX))
     610           8 :             startAngleX = m_nX + 1;
     611           8 :         if (startAngleX <= endAngleX)
     612             :         {
     613           8 :             std::fill(vResult.begin() + m_nX + 1, vResult.begin() + startAngleX,
     614           8 :                       oOpts.outOfRangeVal);
     615           8 :             std::fill(vResult.begin() + endAngleX + 1, vResult.end(),
     616           8 :                       oOpts.outOfRangeVal);
     617             :         }
     618             :         else
     619             :         {
     620           0 :             std::fill(vResult.begin() + endAngleX + 1,
     621           0 :                       vResult.begin() + startAngleX, oOpts.outOfRangeVal);
     622             :         }
     623             :     }
     624             :     // nLine == m_nY
     625           0 :     else if (!rayBetween(oOpts.startAngle, oOpts.endAngle, 0))
     626             :     {
     627           1 :         std::fill(vResult.begin() + m_nX + 1, vResult.end(),
     628           1 :                   oOpts.outOfRangeVal);
     629           1 :         return true;
     630             :     }
     631           9 :     return false;
     632             : }
     633             : 
     634             : /// Perform angle and min/max masking to the left of the observer.
     635             : ///
     636             : /// @param vResult  Raster line to mask.
     637             : /// @param ll  Min/max line limits.
     638             : /// @param nLine  Line number.
     639       25959 : void ViewshedExecutor::maskLineLeft(std::vector<double> &vResult,
     640             :                                     const LineLimits &ll, int nLine)
     641             : {
     642             :     // If we've already masked with angles everything, just return.
     643       25959 :     if (maskAngleLeft(vResult, nLine))
     644           2 :         return;
     645             : 
     646             :     // Mask cells from the left edge to the left limit.
     647       25927 :     std::fill(vResult.begin(), vResult.begin() + ll.left, oOpts.outOfRangeVal);
     648             :     // Mask cells from the left min to the observer.
     649       25874 :     if (ll.leftMin < m_nX)
     650           3 :         std::fill(vResult.begin() + ll.leftMin, vResult.begin() + m_nX,
     651           3 :                   oOpts.outOfRangeVal);
     652             : }
     653             : 
     654             : /// Perform angle and min/max masking to the right of the observer.
     655             : ///
     656             : /// @param vResult  Raster line to mask.
     657             : /// @param ll  Min/max line limits.
     658             : /// @param nLine  Line number.
     659       28922 : void ViewshedExecutor::maskLineRight(std::vector<double> &vResult,
     660             :                                      const LineLimits &ll, int nLine)
     661             : {
     662             :     // If we've already masked with angles everything, just return.
     663       28922 :     if (maskAngleRight(vResult, nLine))
     664           1 :         return;
     665             : 
     666             :     // Mask cells from the observer to right min.
     667       28887 :     std::fill(vResult.begin() + m_nX + 1, vResult.begin() + ll.rightMin,
     668       28919 :               oOpts.outOfRangeVal);
     669             :     // Mask cells from the right limit to the right edge.
     670       28864 :     if (ll.right + 1 < static_cast<int>(vResult.size()))
     671           8 :         std::fill(vResult.begin() + ll.right + 1, vResult.end(),
     672           8 :                   oOpts.outOfRangeVal);
     673             : }
     674             : 
     675             : /// Process the part of the first line to the right of the observer.
     676             : ///
     677             : /// @param ll  Line limits
     678             : /// @param vResult  Vector in which to store the visibility/height results.
     679             : /// @param vThisLineVal  Height of each cell in the line being processed.
     680         231 : void ViewshedExecutor::processFirstLineRight(const LineLimits &ll,
     681             :                                              std::vector<double> &vResult,
     682             :                                              std::vector<double> &vThisLineVal)
     683             : {
     684         231 :     int iStart = m_nX + 1;
     685         231 :     int iEnd = ll.right;
     686             : 
     687             :     // If start is to the right of end, everything is taken care of by left processing.
     688         231 :     if (iStart >= iEnd)
     689           2 :         return;
     690             : 
     691         229 :     iStart = oCurExtent.clampX(iStart);
     692             : 
     693         229 :     double *pThis = vThisLineVal.data() + iStart;
     694             : 
     695             :     // If the start cell is next to the observer, just mark it visible.
     696         229 :     if (iStart - 1 == m_nX || iStart == oCurExtent.xStart)
     697             :     {
     698         229 :         double dfZ = *pThis;
     699         229 :         if (oOpts.outputMode == OutputMode::Normal)
     700         212 :             vResult[iStart] = oOpts.visibleVal;
     701             :         else
     702          17 :             setOutput(vResult[iStart], *pThis, dfZ);
     703         229 :         iStart++;
     704         229 :         pThis++;
     705             :     }
     706             : 
     707             :     // Go from the observer to the right, calculating Z as we go.
     708       10812 :     for (int iPixel = iStart; iPixel < iEnd; iPixel++, pThis++)
     709             :     {
     710       10583 :         int nXOffset = std::abs(iPixel - m_nX);
     711       10583 :         double dfZ = CalcHeightLine(nXOffset, *(pThis - 1));
     712       10583 :         setOutput(vResult[iPixel], *pThis, dfZ);
     713             :     }
     714             : 
     715         229 :     maskLineRight(vResult, ll, m_nY);
     716             : }
     717             : 
     718             : /// Process a line to the left of the observer.
     719             : ///
     720             : /// @param nYOffset  Offset of the line being processed from the observer
     721             : /// @param ll  Line limits
     722             : /// @param vResult  Vector in which to store the visibility/height results.
     723             : /// @param vThisLineVal  Height of each cell in the line being processed.
     724             : /// @param vLastLineVal  Observable height of each cell in the previous line processed.
     725       28633 : void ViewshedExecutor::processLineLeft(int nYOffset, LineLimits &ll,
     726             :                                        std::vector<double> &vResult,
     727             :                                        std::vector<double> &vThisLineVal,
     728             :                                        std::vector<double> &vLastLineVal)
     729             : {
     730       28633 :     int iStart = m_nX - 1;
     731       28633 :     int iEnd = ll.left - 1;
     732       28633 :     int nLine = m_nY + nYOffset;
     733             :     // If start to the left of end, everything is taken care of by processing right.
     734       28633 :     if (iStart <= iEnd)
     735        2924 :         return;
     736       25709 :     iStart = oCurExtent.clampX(iStart);
     737             : 
     738       25664 :     nYOffset = std::abs(nYOffset);
     739       25664 :     double *pThis = vThisLineVal.data() + iStart;
     740       25647 :     double *pLast = vLastLineVal.data() + iStart;
     741             : 
     742             :     // If the observer is to the right of the raster, mark the first cell to the left as
     743             :     // visible. This may mark an out-of-range cell with a value, but this will be fixed
     744             :     // with the out of range assignment at the end.
     745             : 
     746       25674 :     if (iStart == oCurExtent.xStop - 1)
     747             :     {
     748           6 :         if (oOpts.outputMode == OutputMode::Normal)
     749           0 :             vResult[iStart] = oOpts.visibleVal;
     750             :         else
     751           6 :             setOutput(vResult[iStart], *pThis, *pThis);
     752           6 :         iStart--;
     753           6 :         pThis--;
     754           6 :         pLast--;
     755             :     }
     756             : 
     757             :     // Go from the observer to the left, calculating Z as we go.
     758     1435330 :     for (int iPixel = iStart; iPixel > iEnd; iPixel--, pThis--, pLast--)
     759             :     {
     760     1409560 :         int nXOffset = std::abs(iPixel - m_nX);
     761             :         double dfZ;
     762     1409560 :         if (nXOffset == nYOffset)
     763             :         {
     764       15647 :             if (nXOffset == 1)
     765         375 :                 dfZ = *pThis;
     766             :             else
     767       15272 :                 dfZ = CalcHeightLine(nXOffset, *(pLast + 1));
     768             :         }
     769             :         else
     770             :             dfZ =
     771     1393920 :                 oZcalc(nXOffset, nYOffset, *(pThis + 1), *pLast, *(pLast + 1));
     772     1411470 :         setOutput(vResult[iPixel], *pThis, dfZ);
     773             :     }
     774             : 
     775       25769 :     maskLineLeft(vResult, ll, nLine);
     776             : }
     777             : 
     778             : /// Process a line to the right of the observer.
     779             : ///
     780             : /// @param nYOffset  Offset of the line being processed from the observer
     781             : /// @param ll  Line limits
     782             : /// @param vResult  Vector in which to store the visibility/height results.
     783             : /// @param vThisLineVal  Height of each cell in the line being processed.
     784             : /// @param vLastLineVal  Observable height of each cell in the previous line processed.
     785       28661 : void ViewshedExecutor::processLineRight(int nYOffset, LineLimits &ll,
     786             :                                         std::vector<double> &vResult,
     787             :                                         std::vector<double> &vThisLineVal,
     788             :                                         std::vector<double> &vLastLineVal)
     789             : {
     790       28661 :     int iStart = m_nX + 1;
     791       28661 :     int iEnd = ll.right;
     792       28661 :     int nLine = m_nY + nYOffset;
     793             : 
     794             :     // If start is to the right of end, everything is taken care of by processing left.
     795       28661 :     if (iStart >= iEnd)
     796          12 :         return;
     797       28649 :     iStart = oCurExtent.clampX(iStart);
     798             : 
     799       28647 :     nYOffset = std::abs(nYOffset);
     800       28647 :     double *pThis = vThisLineVal.data() + iStart;
     801       28625 :     double *pLast = vLastLineVal.data() + iStart;
     802             : 
     803             :     // If the observer is to the left of the raster, mark the first cell to the right as
     804             :     // visible. This may mark an out-of-range cell with a value, but this will be fixed
     805             :     // with the out of range assignment at the end.
     806       28631 :     if (iStart == 0)
     807             :     {
     808           6 :         if (oOpts.outputMode == OutputMode::Normal)
     809           0 :             vResult[iStart] = oOpts.visibleVal;
     810             :         else
     811           6 :             setOutput(vResult[0], *pThis, *pThis);
     812           6 :         iStart++;
     813           6 :         pThis++;
     814           6 :         pLast++;
     815             :     }
     816             : 
     817             :     // Go from the observer to the right, calculating Z as we go.
     818     1486320 :     for (int iPixel = iStart; iPixel < iEnd; iPixel++, pThis++, pLast++)
     819             :     {
     820     1457640 :         int nXOffset = std::abs(iPixel - m_nX);
     821             :         double dfZ;
     822     1457640 :         if (nXOffset == nYOffset)
     823             :         {
     824       16122 :             if (nXOffset == 1)
     825         416 :                 dfZ = *pThis;
     826             :             else
     827       15706 :                 dfZ = CalcHeightLine(nXOffset, *(pLast - 1));
     828             :         }
     829             :         else
     830             :             dfZ =
     831     1441520 :                 oZcalc(nXOffset, nYOffset, *(pThis - 1), *pLast, *(pLast - 1));
     832     1459210 :         setOutput(vResult[iPixel], *pThis, dfZ);
     833             :     }
     834             : 
     835       28684 :     maskLineRight(vResult, ll, nLine);
     836             : }
     837             : 
     838             : /// Apply angular mask to the initial X position.  Assumes m_nX is in the raster.
     839             : /// @param vResult  Raster line on which to apply mask.
     840             : /// @param nLine  Line number.
     841       28546 : void ViewshedExecutor::maskInitial(std::vector<double> &vResult, int nLine)
     842             : {
     843       28546 :     if (!oOpts.angleMasking())
     844       28482 :         return;
     845             : 
     846          21 :     if (nLine < m_nY)
     847             :     {
     848          13 :         if (!rayBetween(oOpts.startAngle, oOpts.endAngle, M_PI / 2))
     849           0 :             vResult[m_nX] = oOpts.outOfRangeVal;
     850             :     }
     851           8 :     else if (nLine > m_nY)
     852             :     {
     853           5 :         if (!rayBetween(oOpts.startAngle, oOpts.endAngle, 3 * M_PI / 2))
     854           0 :             vResult[m_nX] = oOpts.outOfRangeVal;
     855             :     }
     856             : }
     857             : 
     858             : /// Process a line above or below the observer.
     859             : ///
     860             : /// @param nLine  Line number being processed.
     861             : /// @param vLastLineVal  Vector in which to store the read line. Becomes the last line
     862             : ///    in further processing.
     863             : /// @return True on success, false otherwise.
     864       28719 : bool ViewshedExecutor::processLine(int nLine, std::vector<double> &vLastLineVal)
     865             : {
     866       28719 :     int nYOffset = nLine - m_nY;
     867       57431 :     std::vector<double> vResult(oOutExtent.xSize());
     868       57418 :     std::vector<double> vThisLineVal(oOutExtent.xSize());
     869       57432 :     std::vector<double> vPitchMaskVal;
     870       28685 :     if (oOpts.pitchMasking())
     871          18 :         vPitchMaskVal.resize(oOutExtent.xSize(),
     872          36 :                              std::numeric_limits<double>::quiet_NaN());
     873             : 
     874       28684 :     if (!readLine(nLine, vThisLineVal.data()))
     875           0 :         return false;
     876             : 
     877             :     // In DEM mode the base is the input DEM value.
     878             :     // In ground mode the base is zero.
     879       28632 :     if (oOpts.outputMode == OutputMode::DEM)
     880         163 :         vResult = vThisLineVal;
     881             : 
     882             :     // Adjust height of the read line.
     883       28632 :     LineLimits ll = adjustHeight(nYOffset, vThisLineVal, vPitchMaskVal);
     884             : 
     885             :     // Handle the initial position on the line.
     886       28702 :     if (oCurExtent.containsX(m_nX))
     887             :     {
     888       28562 :         if (ll.left < ll.right && ll.leftMin == ll.rightMin)
     889             :         {
     890             :             double dfZ;
     891       28553 :             if (std::abs(nYOffset) == 1)
     892         414 :                 dfZ = vThisLineVal[m_nX];
     893             :             else
     894       28139 :                 dfZ = CalcHeightLine(nYOffset, vLastLineVal[m_nX]);
     895       28549 :             setOutput(vResult[m_nX], vThisLineVal[m_nX], dfZ);
     896             :         }
     897             :         else
     898           9 :             vResult[m_nX] = oOpts.outOfRangeVal;
     899             : 
     900       28503 :         maskInitial(vResult, nLine);
     901             :     }
     902             : 
     903             :     // process left half then right half of line
     904       57296 :     CPLJobQueuePtr pQueue = m_pool.CreateJobQueue();
     905       28513 :     pQueue->SubmitJob(
     906       28629 :         [&]() {
     907       28629 :             processLineLeft(nYOffset, ll, vResult, vThisLineVal, vLastLineVal);
     908       28605 :         });
     909       28615 :     pQueue->SubmitJob(
     910       28674 :         [&]() {
     911       28674 :             processLineRight(nYOffset, ll, vResult, vThisLineVal, vLastLineVal);
     912       28659 :         });
     913       28634 :     pQueue->WaitCompletion();
     914             :     // Make the current line the last line.
     915       28674 :     vLastLineVal = std::move(vThisLineVal);
     916             : 
     917       28600 :     if (oOpts.pitchMasking())
     918          18 :         applyPitchMask(vResult, vPitchMaskVal);
     919       28510 :     if (!writeLine(nLine, vResult))
     920           0 :         return false;
     921             : 
     922       28575 :     return oProgress.lineComplete();
     923             : }
     924             : 
     925             : // Calculate the ray angle from the origin to middle of the top or bottom
     926             : // of each quadrant.
     927           2 : void ViewshedExecutor::calcTestAngles()
     928             : {
     929             :     // Quadrant 1.
     930             :     {
     931           2 :         int ysize = m_nY + 1;
     932           2 :         int xsize = oCurExtent.xStop - m_nX;
     933           2 :         m_testAngle[1] = atan2(ysize, xsize / 2.0);
     934             :     }
     935             : 
     936             :     // Quadrant 2.
     937             :     {
     938           2 :         int ysize = m_nY + 1;
     939           2 :         int xsize = m_nX + 1;
     940           2 :         m_testAngle[2] = atan2(ysize, -xsize / 2.0);
     941             :     }
     942             : 
     943             :     // Quadrant 3.
     944             :     {
     945           2 :         int ysize = oCurExtent.yStop - m_nY;
     946           2 :         int xsize = m_nX + 1;
     947           2 :         m_testAngle[3] = atan2(-ysize, -xsize / 2.0);
     948             :     }
     949             : 
     950             :     // Quadrant 4.
     951             :     {
     952           2 :         int ysize = oCurExtent.yStop - m_nY;
     953           2 :         int xsize = oCurExtent.xStop - m_nX;
     954           2 :         m_testAngle[4] = atan2(-ysize, xsize / 2.0);
     955             :     }
     956             : 
     957             :     // Adjust range to [0, 2 * M_PI)
     958          10 :     for (int i = 1; i <= 4; ++i)
     959           8 :         if (m_testAngle[i] < 0)
     960           4 :             m_testAngle[i] += (2 * M_PI);
     961           2 : }
     962             : 
     963             : /// Run the viewshed computation
     964             : /// @return  Success as true or false.
     965         235 : bool ViewshedExecutor::run()
     966             : {
     967             :     // If we're doing angular masking, calculate the test angles used later.
     968         235 :     if (oOpts.angleMasking())
     969           2 :         calcTestAngles();
     970             : 
     971         470 :     std::vector<double> vFirstLineVal(oCurExtent.xSize());
     972         235 :     if (!processFirstLine(vFirstLineVal))
     973           0 :         return false;
     974             : 
     975         235 :     if (oOpts.cellMode == CellMode::Edge)
     976         235 :         oZcalc = doEdge;
     977           0 :     else if (oOpts.cellMode == CellMode::Diagonal)
     978           0 :         oZcalc = doDiagonal;
     979           0 :     else if (oOpts.cellMode == CellMode::Min)
     980           0 :         oZcalc = doMin;
     981           0 :     else if (oOpts.cellMode == CellMode::Max)
     982           0 :         oZcalc = doMax;
     983             : 
     984             :     // scan upwards
     985         235 :     int yStart = oCurExtent.clampY(m_nY);
     986         235 :     std::atomic<bool> err(false);
     987         235 :     CPLJobQueuePtr pQueue = m_pool.CreateJobQueue();
     988         235 :     pQueue->SubmitJob(
     989         235 :         [&]()
     990             :         {
     991         471 :             std::vector<double> vLastLineVal = vFirstLineVal;
     992             : 
     993       13517 :             for (int nLine = yStart - 1; nLine >= oCurExtent.yStart && !err;
     994             :                  nLine--)
     995       13280 :                 if (!processLine(nLine, vLastLineVal))
     996           0 :                     err = true;
     997         235 :         });
     998             : 
     999             :     // scan downwards
    1000         235 :     pQueue->SubmitJob(
    1001         235 :         [&]()
    1002             :         {
    1003         469 :             std::vector<double> vLastLineVal = vFirstLineVal;
    1004             : 
    1005       15672 :             for (int nLine = yStart + 1; nLine < oCurExtent.yStop && !err;
    1006             :                  nLine++)
    1007       15437 :                 if (!processLine(nLine, vLastLineVal))
    1008           0 :                     err = true;
    1009         235 :         });
    1010         235 :     return true;
    1011             : }
    1012             : 
    1013             : }  // namespace viewshed
    1014             : }  // namespace gdal

Generated by: LCOV version 1.14