Line data Source code
1 : /*
2 : * Copyright (c) 1996-1997 Sam Leffler
3 : * Copyright (c) 1996 Pixar
4 : *
5 : * Permission to use, copy, modify, distribute, and sell this software and
6 : * its documentation for any purpose is hereby granted without fee, provided
7 : * that (i) the above copyright notices and this permission notice appear in
8 : * all copies of the software and related documentation, and (ii) the names of
9 : * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
10 : * publicity relating to the software without the specific, prior written
11 : * permission of Pixar, Sam Leffler and Silicon Graphics.
12 : *
13 : * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 : * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 : * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 : *
17 : * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18 : * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 : * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 : * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 : * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 : * OF THIS SOFTWARE.
23 : */
24 :
25 : #include "tiffiop.h"
26 : #ifdef PIXARLOG_SUPPORT
27 :
28 : /*
29 : * TIFF Library.
30 : * PixarLog Compression Support
31 : *
32 : * Contributed by Dan McCoy.
33 : *
34 : * PixarLog film support uses the TIFF library to store companded
35 : * 11 bit values into a tiff file, which are compressed using the
36 : * zip compressor.
37 : *
38 : * The codec can take as input and produce as output 32-bit IEEE float values
39 : * as well as 16-bit or 8-bit unsigned integer values.
40 : *
41 : * On writing any of the above are converted into the internal
42 : * 11-bit log format. In the case of 8 and 16 bit values, the
43 : * input is assumed to be unsigned linear color values that represent
44 : * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
45 : * be the normal linear color range, in addition over 1 values are
46 : * accepted up to a value of about 25.0 to encode "hot" highlights and such.
47 : * The encoding is lossless for 8-bit values, slightly lossy for the
48 : * other bit depths. The actual color precision should be better
49 : * than the human eye can perceive with extra room to allow for
50 : * error introduced by further image computation. As with any quantized
51 : * color format, it is possible to perform image calculations which
52 : * expose the quantization error. This format should certainly be less
53 : * susceptible to such errors than standard 8-bit encodings, but more
54 : * susceptible than straight 16-bit or 32-bit encodings.
55 : *
56 : * On reading the internal format is converted to the desired output format.
57 : * The program can request which format it desires by setting the internal
58 : * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
59 : * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
60 : * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
61 : * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
62 : *
63 : * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
64 : * values with the difference that if there are exactly three or four channels
65 : * (rgb or rgba) it swaps the channel order (bgr or abgr).
66 : *
67 : * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
68 : * packed in 16-bit values. However no tools are supplied for interpreting
69 : * these values.
70 : *
71 : * "hot" (over 1.0) areas written in floating point get clamped to
72 : * 1.0 in the integer data types.
73 : *
74 : * When the file is closed after writing, the bit depth and sample format
75 : * are set always to appear as if 8-bit data has been written into it.
76 : * That way a naive program unaware of the particulars of the encoding
77 : * gets the format it is most likely able to handle.
78 : *
79 : * The codec does it's own horizontal differencing step on the coded
80 : * values so the libraries predictor stuff should be turned off.
81 : * The codec also handle byte swapping the encoded values as necessary
82 : * since the library does not have the information necessary
83 : * to know the bit depth of the raw unencoded buffer.
84 : *
85 : * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
86 : * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
87 : * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
88 : */
89 :
90 : #include "tif_predict.h"
91 : #include "zlib.h"
92 :
93 : #include <math.h>
94 : #include <stdio.h>
95 : #include <stdlib.h>
96 :
97 : /* Tables for converting to/from 11 bit coded values */
98 :
99 : #define TSIZE 2048 /* decode table size (11-bit tokens) */
100 : #define TSIZEP1 2049 /* Plus one for slop */
101 : #define ONE 1250 /* token value of 1.0 exactly */
102 : #define RATIO 1.004 /* nominal ratio for log part */
103 :
104 : #define CODE_MASK 0x7ff /* 11 bits. */
105 :
106 : static float Fltsize;
107 : static float LogK1, LogK2;
108 :
109 : #define REPEAT(n, op) \
110 : { \
111 : int i; \
112 : i = n; \
113 : do \
114 : { \
115 : i--; \
116 : op; \
117 : } while (i > 0); \
118 : }
119 :
120 0 : static void horizontalAccumulateF(uint16_t *wp, int n, int stride, float *op,
121 : float *ToLinearF)
122 : {
123 : register unsigned int cr, cg, cb, ca, mask;
124 : register float t0, t1, t2, t3;
125 :
126 0 : if (n >= stride)
127 : {
128 0 : mask = CODE_MASK;
129 0 : if (stride == 3)
130 : {
131 0 : t0 = ToLinearF[cr = (wp[0] & mask)];
132 0 : t1 = ToLinearF[cg = (wp[1] & mask)];
133 0 : t2 = ToLinearF[cb = (wp[2] & mask)];
134 0 : op[0] = t0;
135 0 : op[1] = t1;
136 0 : op[2] = t2;
137 0 : n -= 3;
138 0 : while (n > 0)
139 : {
140 0 : wp += 3;
141 0 : op += 3;
142 0 : n -= 3;
143 0 : t0 = ToLinearF[(cr += wp[0]) & mask];
144 0 : t1 = ToLinearF[(cg += wp[1]) & mask];
145 0 : t2 = ToLinearF[(cb += wp[2]) & mask];
146 0 : op[0] = t0;
147 0 : op[1] = t1;
148 0 : op[2] = t2;
149 : }
150 : }
151 0 : else if (stride == 4)
152 : {
153 0 : t0 = ToLinearF[cr = (wp[0] & mask)];
154 0 : t1 = ToLinearF[cg = (wp[1] & mask)];
155 0 : t2 = ToLinearF[cb = (wp[2] & mask)];
156 0 : t3 = ToLinearF[ca = (wp[3] & mask)];
157 0 : op[0] = t0;
158 0 : op[1] = t1;
159 0 : op[2] = t2;
160 0 : op[3] = t3;
161 0 : n -= 4;
162 0 : while (n > 0)
163 : {
164 0 : wp += 4;
165 0 : op += 4;
166 0 : n -= 4;
167 0 : t0 = ToLinearF[(cr += wp[0]) & mask];
168 0 : t1 = ToLinearF[(cg += wp[1]) & mask];
169 0 : t2 = ToLinearF[(cb += wp[2]) & mask];
170 0 : t3 = ToLinearF[(ca += wp[3]) & mask];
171 0 : op[0] = t0;
172 0 : op[1] = t1;
173 0 : op[2] = t2;
174 0 : op[3] = t3;
175 : }
176 : }
177 : else
178 : {
179 0 : REPEAT(stride, *op = ToLinearF[*wp & mask]; wp++; op++)
180 0 : n -= stride;
181 0 : while (n > 0)
182 : {
183 0 : REPEAT(stride, wp[stride] += *wp; *op = ToLinearF[*wp & mask];
184 : wp++; op++)
185 0 : n -= stride;
186 : }
187 : }
188 : }
189 0 : }
190 :
191 0 : static void horizontalAccumulate12(uint16_t *wp, int n, int stride, int16_t *op,
192 : float *ToLinearF)
193 : {
194 : register unsigned int cr, cg, cb, ca, mask;
195 : register float t0, t1, t2, t3;
196 :
197 : #define SCALE12 2048.0F
198 : #define CLAMP12(t) (((t) < 3071) ? (uint16_t)(t) : 3071)
199 :
200 0 : if (n >= stride)
201 : {
202 0 : mask = CODE_MASK;
203 0 : if (stride == 3)
204 : {
205 0 : t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
206 0 : t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
207 0 : t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
208 0 : op[0] = CLAMP12(t0);
209 0 : op[1] = CLAMP12(t1);
210 0 : op[2] = CLAMP12(t2);
211 0 : n -= 3;
212 0 : while (n > 0)
213 : {
214 0 : wp += 3;
215 0 : op += 3;
216 0 : n -= 3;
217 0 : t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
218 0 : t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
219 0 : t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
220 0 : op[0] = CLAMP12(t0);
221 0 : op[1] = CLAMP12(t1);
222 0 : op[2] = CLAMP12(t2);
223 : }
224 : }
225 0 : else if (stride == 4)
226 : {
227 0 : t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
228 0 : t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
229 0 : t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
230 0 : t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
231 0 : op[0] = CLAMP12(t0);
232 0 : op[1] = CLAMP12(t1);
233 0 : op[2] = CLAMP12(t2);
234 0 : op[3] = CLAMP12(t3);
235 0 : n -= 4;
236 0 : while (n > 0)
237 : {
238 0 : wp += 4;
239 0 : op += 4;
240 0 : n -= 4;
241 0 : t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
242 0 : t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
243 0 : t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
244 0 : t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
245 0 : op[0] = CLAMP12(t0);
246 0 : op[1] = CLAMP12(t1);
247 0 : op[2] = CLAMP12(t2);
248 0 : op[3] = CLAMP12(t3);
249 : }
250 : }
251 : else
252 : {
253 0 : REPEAT(stride, t0 = ToLinearF[*wp & mask] * SCALE12;
254 : *op = CLAMP12(t0); wp++; op++)
255 0 : n -= stride;
256 0 : while (n > 0)
257 : {
258 0 : REPEAT(stride, wp[stride] += *wp;
259 : t0 = ToLinearF[wp[stride] & mask] * SCALE12;
260 : *op = CLAMP12(t0); wp++; op++)
261 0 : n -= stride;
262 : }
263 : }
264 : }
265 0 : }
266 :
267 0 : static void horizontalAccumulate16(uint16_t *wp, int n, int stride,
268 : uint16_t *op, uint16_t *ToLinear16)
269 : {
270 : register unsigned int cr, cg, cb, ca, mask;
271 :
272 0 : if (n >= stride)
273 : {
274 0 : mask = CODE_MASK;
275 0 : if (stride == 3)
276 : {
277 0 : op[0] = ToLinear16[cr = (wp[0] & mask)];
278 0 : op[1] = ToLinear16[cg = (wp[1] & mask)];
279 0 : op[2] = ToLinear16[cb = (wp[2] & mask)];
280 0 : n -= 3;
281 0 : while (n > 0)
282 : {
283 0 : wp += 3;
284 0 : op += 3;
285 0 : n -= 3;
286 0 : op[0] = ToLinear16[(cr += wp[0]) & mask];
287 0 : op[1] = ToLinear16[(cg += wp[1]) & mask];
288 0 : op[2] = ToLinear16[(cb += wp[2]) & mask];
289 : }
290 : }
291 0 : else if (stride == 4)
292 : {
293 0 : op[0] = ToLinear16[cr = (wp[0] & mask)];
294 0 : op[1] = ToLinear16[cg = (wp[1] & mask)];
295 0 : op[2] = ToLinear16[cb = (wp[2] & mask)];
296 0 : op[3] = ToLinear16[ca = (wp[3] & mask)];
297 0 : n -= 4;
298 0 : while (n > 0)
299 : {
300 0 : wp += 4;
301 0 : op += 4;
302 0 : n -= 4;
303 0 : op[0] = ToLinear16[(cr += wp[0]) & mask];
304 0 : op[1] = ToLinear16[(cg += wp[1]) & mask];
305 0 : op[2] = ToLinear16[(cb += wp[2]) & mask];
306 0 : op[3] = ToLinear16[(ca += wp[3]) & mask];
307 : }
308 : }
309 : else
310 : {
311 0 : REPEAT(stride, *op = ToLinear16[*wp & mask]; wp++; op++)
312 0 : n -= stride;
313 0 : while (n > 0)
314 : {
315 0 : REPEAT(stride, wp[stride] += *wp; *op = ToLinear16[*wp & mask];
316 : wp++; op++)
317 0 : n -= stride;
318 : }
319 : }
320 : }
321 0 : }
322 :
323 : /*
324 : * Returns the log encoded 11-bit values with the horizontal
325 : * differencing undone.
326 : */
327 0 : static void horizontalAccumulate11(uint16_t *wp, int n, int stride,
328 : uint16_t *op)
329 : {
330 : register unsigned int cr, cg, cb, ca, mask;
331 :
332 0 : if (n >= stride)
333 : {
334 0 : mask = CODE_MASK;
335 0 : if (stride == 3)
336 : {
337 0 : op[0] = wp[0];
338 0 : op[1] = wp[1];
339 0 : op[2] = wp[2];
340 0 : cr = wp[0];
341 0 : cg = wp[1];
342 0 : cb = wp[2];
343 0 : n -= 3;
344 0 : while (n > 0)
345 : {
346 0 : wp += 3;
347 0 : op += 3;
348 0 : n -= 3;
349 0 : op[0] = (uint16_t)((cr += wp[0]) & mask);
350 0 : op[1] = (uint16_t)((cg += wp[1]) & mask);
351 0 : op[2] = (uint16_t)((cb += wp[2]) & mask);
352 : }
353 : }
354 0 : else if (stride == 4)
355 : {
356 0 : op[0] = wp[0];
357 0 : op[1] = wp[1];
358 0 : op[2] = wp[2];
359 0 : op[3] = wp[3];
360 0 : cr = wp[0];
361 0 : cg = wp[1];
362 0 : cb = wp[2];
363 0 : ca = wp[3];
364 0 : n -= 4;
365 0 : while (n > 0)
366 : {
367 0 : wp += 4;
368 0 : op += 4;
369 0 : n -= 4;
370 0 : op[0] = (uint16_t)((cr += wp[0]) & mask);
371 0 : op[1] = (uint16_t)((cg += wp[1]) & mask);
372 0 : op[2] = (uint16_t)((cb += wp[2]) & mask);
373 0 : op[3] = (uint16_t)((ca += wp[3]) & mask);
374 : }
375 : }
376 : else
377 : {
378 0 : REPEAT(stride, *op = *wp & mask; wp++; op++)
379 0 : n -= stride;
380 0 : while (n > 0)
381 : {
382 0 : REPEAT(stride, wp[stride] += *wp; *op = *wp & mask; wp++; op++)
383 0 : n -= stride;
384 : }
385 : }
386 : }
387 0 : }
388 :
389 0 : static void horizontalAccumulate8(uint16_t *wp, int n, int stride,
390 : unsigned char *op, unsigned char *ToLinear8)
391 : {
392 : register unsigned int cr, cg, cb, ca, mask;
393 :
394 0 : if (n >= stride)
395 : {
396 0 : mask = CODE_MASK;
397 0 : if (stride == 3)
398 : {
399 0 : op[0] = ToLinear8[cr = (wp[0] & mask)];
400 0 : op[1] = ToLinear8[cg = (wp[1] & mask)];
401 0 : op[2] = ToLinear8[cb = (wp[2] & mask)];
402 0 : n -= 3;
403 0 : while (n > 0)
404 : {
405 0 : n -= 3;
406 0 : wp += 3;
407 0 : op += 3;
408 0 : op[0] = ToLinear8[(cr += wp[0]) & mask];
409 0 : op[1] = ToLinear8[(cg += wp[1]) & mask];
410 0 : op[2] = ToLinear8[(cb += wp[2]) & mask];
411 : }
412 : }
413 0 : else if (stride == 4)
414 : {
415 0 : op[0] = ToLinear8[cr = (wp[0] & mask)];
416 0 : op[1] = ToLinear8[cg = (wp[1] & mask)];
417 0 : op[2] = ToLinear8[cb = (wp[2] & mask)];
418 0 : op[3] = ToLinear8[ca = (wp[3] & mask)];
419 0 : n -= 4;
420 0 : while (n > 0)
421 : {
422 0 : n -= 4;
423 0 : wp += 4;
424 0 : op += 4;
425 0 : op[0] = ToLinear8[(cr += wp[0]) & mask];
426 0 : op[1] = ToLinear8[(cg += wp[1]) & mask];
427 0 : op[2] = ToLinear8[(cb += wp[2]) & mask];
428 0 : op[3] = ToLinear8[(ca += wp[3]) & mask];
429 : }
430 : }
431 : else
432 : {
433 0 : REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++)
434 0 : n -= stride;
435 0 : while (n > 0)
436 : {
437 0 : REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask];
438 : wp++; op++)
439 0 : n -= stride;
440 : }
441 : }
442 : }
443 0 : }
444 :
445 0 : static void horizontalAccumulate8abgr(uint16_t *wp, int n, int stride,
446 : unsigned char *op,
447 : unsigned char *ToLinear8)
448 : {
449 : register unsigned int cr, cg, cb, ca, mask;
450 : register unsigned char t0, t1, t2, t3;
451 :
452 0 : if (n >= stride)
453 : {
454 0 : mask = CODE_MASK;
455 0 : if (stride == 3)
456 : {
457 0 : op[0] = 0;
458 0 : t1 = ToLinear8[cb = (wp[2] & mask)];
459 0 : t2 = ToLinear8[cg = (wp[1] & mask)];
460 0 : t3 = ToLinear8[cr = (wp[0] & mask)];
461 0 : op[1] = t1;
462 0 : op[2] = t2;
463 0 : op[3] = t3;
464 0 : n -= 3;
465 0 : while (n > 0)
466 : {
467 0 : n -= 3;
468 0 : wp += 3;
469 0 : op += 4;
470 0 : op[0] = 0;
471 0 : t1 = ToLinear8[(cb += wp[2]) & mask];
472 0 : t2 = ToLinear8[(cg += wp[1]) & mask];
473 0 : t3 = ToLinear8[(cr += wp[0]) & mask];
474 0 : op[1] = t1;
475 0 : op[2] = t2;
476 0 : op[3] = t3;
477 : }
478 : }
479 0 : else if (stride == 4)
480 : {
481 0 : t0 = ToLinear8[ca = (wp[3] & mask)];
482 0 : t1 = ToLinear8[cb = (wp[2] & mask)];
483 0 : t2 = ToLinear8[cg = (wp[1] & mask)];
484 0 : t3 = ToLinear8[cr = (wp[0] & mask)];
485 0 : op[0] = t0;
486 0 : op[1] = t1;
487 0 : op[2] = t2;
488 0 : op[3] = t3;
489 0 : n -= 4;
490 0 : while (n > 0)
491 : {
492 0 : n -= 4;
493 0 : wp += 4;
494 0 : op += 4;
495 0 : t0 = ToLinear8[(ca += wp[3]) & mask];
496 0 : t1 = ToLinear8[(cb += wp[2]) & mask];
497 0 : t2 = ToLinear8[(cg += wp[1]) & mask];
498 0 : t3 = ToLinear8[(cr += wp[0]) & mask];
499 0 : op[0] = t0;
500 0 : op[1] = t1;
501 0 : op[2] = t2;
502 0 : op[3] = t3;
503 : }
504 : }
505 : else
506 : {
507 0 : REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++)
508 0 : n -= stride;
509 0 : while (n > 0)
510 : {
511 0 : REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask];
512 : wp++; op++)
513 0 : n -= stride;
514 : }
515 : }
516 : }
517 0 : }
518 :
519 : /*
520 : * State block for each open TIFF
521 : * file using PixarLog compression/decompression.
522 : */
523 : typedef struct
524 : {
525 : TIFFPredictorState predict;
526 : z_stream stream;
527 : tmsize_t tbuf_size; /* only set/used on reading for now */
528 : uint16_t *tbuf;
529 : uint16_t stride;
530 : int state;
531 : int user_datafmt;
532 : int quality;
533 : #define PLSTATE_INIT 1
534 :
535 : TIFFVSetMethod vgetparent; /* super-class method */
536 : TIFFVSetMethod vsetparent; /* super-class method */
537 :
538 : float *ToLinearF;
539 : uint16_t *ToLinear16;
540 : unsigned char *ToLinear8;
541 : uint16_t *FromLT2;
542 : uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */
543 : uint16_t *From8;
544 :
545 : } PixarLogState;
546 :
547 0 : static int PixarLogMakeTables(TIFF *tif, PixarLogState *sp)
548 : {
549 :
550 : /*
551 : * We make several tables here to convert between various external
552 : * representations (float, 16-bit, and 8-bit) and the internal
553 : * 11-bit companded representation. The 11-bit representation has two
554 : * distinct regions. A linear bottom end up through .018316 in steps
555 : * of about .000073, and a region of constant ratio up to about 25.
556 : * These floating point numbers are stored in the main table ToLinearF.
557 : * All other tables are derived from this one. The tables (and the
558 : * ratios) are continuous at the internal seam.
559 : */
560 :
561 : int nlin, lt2size;
562 : int i, j;
563 : double b, c, linstep, v;
564 : float *ToLinearF;
565 : uint16_t *ToLinear16;
566 : unsigned char *ToLinear8;
567 : uint16_t *FromLT2;
568 : uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */
569 : uint16_t *From8;
570 :
571 0 : c = log(RATIO);
572 0 : nlin = (int)(1. / c); /* nlin must be an integer */
573 0 : c = 1. / nlin;
574 0 : b = exp(-c * ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
575 0 : linstep = b * c * exp(1.);
576 :
577 0 : LogK1 = (float)(1. / c); /* if (v >= 2) token = k1*log(v*k2) */
578 0 : LogK2 = (float)(1. / b);
579 0 : lt2size = (int)(2. / linstep) + 1;
580 0 : FromLT2 = (uint16_t *)_TIFFmallocExt(tif, lt2size * sizeof(uint16_t));
581 0 : From14 = (uint16_t *)_TIFFmallocExt(tif, 16384 * sizeof(uint16_t));
582 0 : From8 = (uint16_t *)_TIFFmallocExt(tif, 256 * sizeof(uint16_t));
583 0 : ToLinearF = (float *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(float));
584 0 : ToLinear16 = (uint16_t *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(uint16_t));
585 : ToLinear8 =
586 0 : (unsigned char *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(unsigned char));
587 0 : if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
588 0 : ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL)
589 : {
590 0 : if (FromLT2)
591 0 : _TIFFfreeExt(tif, FromLT2);
592 0 : if (From14)
593 0 : _TIFFfreeExt(tif, From14);
594 0 : if (From8)
595 0 : _TIFFfreeExt(tif, From8);
596 0 : if (ToLinearF)
597 0 : _TIFFfreeExt(tif, ToLinearF);
598 0 : if (ToLinear16)
599 0 : _TIFFfreeExt(tif, ToLinear16);
600 0 : if (ToLinear8)
601 0 : _TIFFfreeExt(tif, ToLinear8);
602 0 : sp->FromLT2 = NULL;
603 0 : sp->From14 = NULL;
604 0 : sp->From8 = NULL;
605 0 : sp->ToLinearF = NULL;
606 0 : sp->ToLinear16 = NULL;
607 0 : sp->ToLinear8 = NULL;
608 0 : return 0;
609 : }
610 :
611 0 : j = 0;
612 :
613 0 : for (i = 0; i < nlin; i++)
614 : {
615 0 : v = i * linstep;
616 0 : ToLinearF[j++] = (float)v;
617 : }
618 :
619 0 : for (i = nlin; i < TSIZE; i++)
620 0 : ToLinearF[j++] = (float)(b * exp(c * i));
621 :
622 0 : ToLinearF[2048] = ToLinearF[2047];
623 :
624 0 : for (i = 0; i < TSIZEP1; i++)
625 : {
626 0 : v = ToLinearF[i] * 65535.0 + 0.5;
627 0 : ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16_t)v;
628 0 : v = ToLinearF[i] * 255.0 + 0.5;
629 0 : ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
630 : }
631 :
632 0 : j = 0;
633 0 : for (i = 0; i < lt2size; i++)
634 : {
635 0 : if ((i * linstep) * (i * linstep) > ToLinearF[j] * ToLinearF[j + 1])
636 0 : j++;
637 0 : FromLT2[i] = (uint16_t)j;
638 : }
639 :
640 : /*
641 : * Since we lose info anyway on 16-bit data, we set up a 14-bit
642 : * table and shift 16-bit values down two bits on input.
643 : * saves a little table space.
644 : */
645 0 : j = 0;
646 0 : for (i = 0; i < 16384; i++)
647 : {
648 0 : while ((i / 16383.) * (i / 16383.) > ToLinearF[j] * ToLinearF[j + 1])
649 0 : j++;
650 0 : From14[i] = (uint16_t)j;
651 : }
652 :
653 0 : j = 0;
654 0 : for (i = 0; i < 256; i++)
655 : {
656 0 : while ((i / 255.) * (i / 255.) > ToLinearF[j] * ToLinearF[j + 1])
657 0 : j++;
658 0 : From8[i] = (uint16_t)j;
659 : }
660 :
661 0 : Fltsize = (float)(lt2size / 2);
662 :
663 0 : sp->ToLinearF = ToLinearF;
664 0 : sp->ToLinear16 = ToLinear16;
665 0 : sp->ToLinear8 = ToLinear8;
666 0 : sp->FromLT2 = FromLT2;
667 0 : sp->From14 = From14;
668 0 : sp->From8 = From8;
669 :
670 0 : return 1;
671 : }
672 :
673 : #define PixarLogDecoderState(tif) ((PixarLogState *)(tif)->tif_data)
674 : #define PixarLogEncoderState(tif) ((PixarLogState *)(tif)->tif_data)
675 :
676 : static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s);
677 : static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s);
678 :
679 : #define PIXARLOGDATAFMT_UNKNOWN -1
680 :
681 0 : static int PixarLogGuessDataFmt(TIFFDirectory *td)
682 : {
683 0 : int guess = PIXARLOGDATAFMT_UNKNOWN;
684 0 : int format = td->td_sampleformat;
685 :
686 : /* If the user didn't tell us his datafmt,
687 : * take our best guess from the bitspersample.
688 : */
689 0 : switch (td->td_bitspersample)
690 : {
691 0 : case 32:
692 0 : if (format == SAMPLEFORMAT_IEEEFP)
693 0 : guess = PIXARLOGDATAFMT_FLOAT;
694 0 : break;
695 0 : case 16:
696 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
697 0 : guess = PIXARLOGDATAFMT_16BIT;
698 0 : break;
699 0 : case 12:
700 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
701 0 : guess = PIXARLOGDATAFMT_12BITPICIO;
702 0 : break;
703 0 : case 11:
704 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
705 0 : guess = PIXARLOGDATAFMT_11BITLOG;
706 0 : break;
707 0 : case 8:
708 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
709 0 : guess = PIXARLOGDATAFMT_8BIT;
710 0 : break;
711 : }
712 :
713 0 : return guess;
714 : }
715 :
716 0 : static tmsize_t multiply_ms(tmsize_t m1, tmsize_t m2)
717 : {
718 0 : return _TIFFMultiplySSize(NULL, m1, m2, NULL);
719 : }
720 :
721 0 : static tmsize_t add_ms(tmsize_t m1, tmsize_t m2)
722 : {
723 0 : assert(m1 >= 0 && m2 >= 0);
724 : /* if either input is zero, assume overflow already occurred */
725 0 : if (m1 == 0 || m2 == 0)
726 0 : return 0;
727 0 : else if (m1 > TIFF_TMSIZE_T_MAX - m2)
728 0 : return 0;
729 :
730 0 : return m1 + m2;
731 : }
732 :
733 0 : static int PixarLogFixupTags(TIFF *tif)
734 : {
735 : (void)tif;
736 0 : return (1);
737 : }
738 :
739 0 : static int PixarLogSetupDecode(TIFF *tif)
740 : {
741 : static const char module[] = "PixarLogSetupDecode";
742 0 : TIFFDirectory *td = &tif->tif_dir;
743 0 : PixarLogState *sp = PixarLogDecoderState(tif);
744 : tmsize_t tbuf_size;
745 : uint32_t strip_height;
746 :
747 0 : assert(sp != NULL);
748 :
749 : /* This function can possibly be called several times by */
750 : /* PredictorSetupDecode() if this function succeeds but */
751 : /* PredictorSetup() fails */
752 0 : if ((sp->state & PLSTATE_INIT) != 0)
753 0 : return 1;
754 :
755 0 : strip_height = td->td_rowsperstrip;
756 0 : if (strip_height > td->td_imagelength)
757 0 : strip_height = td->td_imagelength;
758 :
759 : /* Make sure no byte swapping happens on the data
760 : * after decompression. */
761 0 : tif->tif_postdecode = _TIFFNoPostDecode;
762 :
763 : /* for some reason, we can't do this in TIFFInitPixarLog */
764 :
765 0 : sp->stride =
766 0 : (td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel
767 : : 1);
768 0 : tbuf_size = multiply_ms(
769 0 : multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), strip_height),
770 : sizeof(uint16_t));
771 : /* add one more stride in case input ends mid-stride */
772 0 : tbuf_size = add_ms(tbuf_size, sizeof(uint16_t) * sp->stride);
773 0 : if (tbuf_size == 0)
774 0 : return (0); /* TODO: this is an error return without error report
775 : through TIFFErrorExt */
776 0 : sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size);
777 0 : if (sp->tbuf == NULL)
778 0 : return (0);
779 0 : sp->tbuf_size = tbuf_size;
780 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
781 0 : sp->user_datafmt = PixarLogGuessDataFmt(td);
782 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
783 : {
784 0 : _TIFFfreeExt(tif, sp->tbuf);
785 0 : sp->tbuf = NULL;
786 0 : sp->tbuf_size = 0;
787 0 : TIFFErrorExtR(tif, module,
788 : "PixarLog compression can't handle bits depth/data "
789 : "format combination (depth: %" PRIu16 ")",
790 0 : td->td_bitspersample);
791 0 : return (0);
792 : }
793 :
794 0 : if (inflateInit(&sp->stream) != Z_OK)
795 : {
796 0 : _TIFFfreeExt(tif, sp->tbuf);
797 0 : sp->tbuf = NULL;
798 0 : sp->tbuf_size = 0;
799 0 : TIFFErrorExtR(tif, module, "%s",
800 0 : sp->stream.msg ? sp->stream.msg : "(null)");
801 0 : return (0);
802 : }
803 : else
804 : {
805 0 : sp->state |= PLSTATE_INIT;
806 0 : return (1);
807 : }
808 : }
809 :
810 : /*
811 : * Setup state for decoding a strip.
812 : */
813 0 : static int PixarLogPreDecode(TIFF *tif, uint16_t s)
814 : {
815 : static const char module[] = "PixarLogPreDecode";
816 0 : PixarLogState *sp = PixarLogDecoderState(tif);
817 :
818 : (void)s;
819 0 : assert(sp != NULL);
820 0 : sp->stream.next_in = tif->tif_rawdata;
821 : assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised,
822 : we need to simplify this code to reflect a ZLib that is likely updated
823 : to deal with 8byte memory sizes, though this code will respond
824 : appropriately even before we simplify it */
825 0 : sp->stream.avail_in = (uInt)tif->tif_rawcc;
826 0 : if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
827 : {
828 0 : TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
829 0 : return (0);
830 : }
831 0 : return (inflateReset(&sp->stream) == Z_OK);
832 : }
833 :
834 0 : static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s)
835 : {
836 : static const char module[] = "PixarLogDecode";
837 0 : TIFFDirectory *td = &tif->tif_dir;
838 0 : PixarLogState *sp = PixarLogDecoderState(tif);
839 : tmsize_t i;
840 : tmsize_t nsamples;
841 : int llen;
842 : uint16_t *up;
843 :
844 0 : switch (sp->user_datafmt)
845 : {
846 0 : case PIXARLOGDATAFMT_FLOAT:
847 0 : nsamples = occ / sizeof(float); /* XXX float == 32 bits */
848 0 : break;
849 0 : case PIXARLOGDATAFMT_16BIT:
850 : case PIXARLOGDATAFMT_12BITPICIO:
851 : case PIXARLOGDATAFMT_11BITLOG:
852 0 : nsamples = occ / sizeof(uint16_t); /* XXX uint16_t == 16 bits */
853 0 : break;
854 0 : case PIXARLOGDATAFMT_8BIT:
855 : case PIXARLOGDATAFMT_8BITABGR:
856 0 : nsamples = occ;
857 0 : break;
858 0 : default:
859 0 : TIFFErrorExtR(tif, module,
860 : "%" PRIu16 " bit input not supported in PixarLog",
861 0 : td->td_bitspersample);
862 0 : memset(op, 0, (size_t)occ);
863 0 : return 0;
864 : }
865 :
866 0 : llen = sp->stride * td->td_imagewidth;
867 :
868 : (void)s;
869 0 : assert(sp != NULL);
870 :
871 0 : sp->stream.next_in = tif->tif_rawcp;
872 0 : sp->stream.avail_in = (uInt)tif->tif_rawcc;
873 :
874 0 : sp->stream.next_out = (unsigned char *)sp->tbuf;
875 : assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised,
876 : we need to simplify this code to reflect a ZLib that is likely updated
877 : to deal with 8byte memory sizes, though this code will respond
878 : appropriately even before we simplify it */
879 0 : sp->stream.avail_out = (uInt)(nsamples * sizeof(uint16_t));
880 0 : if (sp->stream.avail_out != nsamples * sizeof(uint16_t))
881 : {
882 0 : TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
883 0 : memset(op, 0, (size_t)occ);
884 0 : return (0);
885 : }
886 : /* Check that we will not fill more than what was allocated */
887 0 : if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size)
888 : {
889 0 : TIFFErrorExtR(tif, module, "sp->stream.avail_out > sp->tbuf_size");
890 0 : memset(op, 0, (size_t)occ);
891 0 : return (0);
892 : }
893 : do
894 : {
895 0 : int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
896 0 : if (state == Z_STREAM_END)
897 : {
898 0 : break; /* XXX */
899 : }
900 0 : if (state == Z_DATA_ERROR)
901 : {
902 0 : TIFFErrorExtR(
903 : tif, module, "Decoding error at scanline %" PRIu32 ", %s",
904 0 : tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)");
905 0 : memset(op, 0, (size_t)occ);
906 0 : return (0);
907 : }
908 0 : if (state != Z_OK)
909 : {
910 0 : TIFFErrorExtR(tif, module, "ZLib error: %s",
911 0 : sp->stream.msg ? sp->stream.msg : "(null)");
912 0 : memset(op, 0, (size_t)occ);
913 0 : return (0);
914 : }
915 0 : } while (sp->stream.avail_out > 0);
916 :
917 : /* hopefully, we got all the bytes we needed */
918 0 : if (sp->stream.avail_out != 0)
919 : {
920 0 : TIFFErrorExtR(tif, module,
921 : "Not enough data at scanline %" PRIu32
922 : " (short %u bytes)",
923 : tif->tif_row, sp->stream.avail_out);
924 0 : memset(op, 0, (size_t)occ);
925 0 : return (0);
926 : }
927 :
928 0 : tif->tif_rawcp = sp->stream.next_in;
929 0 : tif->tif_rawcc = sp->stream.avail_in;
930 :
931 0 : up = sp->tbuf;
932 : /* Swap bytes in the data if from a different endian machine. */
933 0 : if (tif->tif_flags & TIFF_SWAB)
934 0 : TIFFSwabArrayOfShort(up, nsamples);
935 :
936 : /*
937 : * if llen is not an exact multiple of nsamples, the decode operation
938 : * may overflow the output buffer, so truncate it enough to prevent
939 : * that but still salvage as much data as possible.
940 : */
941 0 : if (nsamples % llen)
942 : {
943 0 : TIFFWarningExtR(tif, module,
944 : "stride %d is not a multiple of sample count, "
945 : "%" TIFF_SSIZE_FORMAT ", data truncated.",
946 : llen, nsamples);
947 0 : nsamples -= nsamples % llen;
948 : }
949 :
950 0 : for (i = 0; i < nsamples; i += llen, up += llen)
951 : {
952 0 : switch (sp->user_datafmt)
953 : {
954 0 : case PIXARLOGDATAFMT_FLOAT:
955 0 : horizontalAccumulateF(up, llen, sp->stride, (float *)op,
956 : sp->ToLinearF);
957 0 : op += llen * sizeof(float);
958 0 : break;
959 0 : case PIXARLOGDATAFMT_16BIT:
960 0 : horizontalAccumulate16(up, llen, sp->stride, (uint16_t *)op,
961 : sp->ToLinear16);
962 0 : op += llen * sizeof(uint16_t);
963 0 : break;
964 0 : case PIXARLOGDATAFMT_12BITPICIO:
965 0 : horizontalAccumulate12(up, llen, sp->stride, (int16_t *)op,
966 : sp->ToLinearF);
967 0 : op += llen * sizeof(int16_t);
968 0 : break;
969 0 : case PIXARLOGDATAFMT_11BITLOG:
970 0 : horizontalAccumulate11(up, llen, sp->stride, (uint16_t *)op);
971 0 : op += llen * sizeof(uint16_t);
972 0 : break;
973 0 : case PIXARLOGDATAFMT_8BIT:
974 0 : horizontalAccumulate8(up, llen, sp->stride, (unsigned char *)op,
975 : sp->ToLinear8);
976 0 : op += llen * sizeof(unsigned char);
977 0 : break;
978 0 : case PIXARLOGDATAFMT_8BITABGR:
979 0 : horizontalAccumulate8abgr(up, llen, sp->stride,
980 : (unsigned char *)op, sp->ToLinear8);
981 0 : op += llen * sizeof(unsigned char);
982 0 : break;
983 0 : default:
984 0 : TIFFErrorExtR(tif, module, "Unsupported bits/sample: %" PRIu16,
985 0 : td->td_bitspersample);
986 0 : memset(op, 0, (size_t)occ);
987 0 : return (0);
988 : }
989 : }
990 :
991 0 : return (1);
992 : }
993 :
994 0 : static int PixarLogSetupEncode(TIFF *tif)
995 : {
996 : static const char module[] = "PixarLogSetupEncode";
997 0 : TIFFDirectory *td = &tif->tif_dir;
998 0 : PixarLogState *sp = PixarLogEncoderState(tif);
999 : tmsize_t tbuf_size;
1000 :
1001 0 : assert(sp != NULL);
1002 :
1003 : /* for some reason, we can't do this in TIFFInitPixarLog */
1004 :
1005 0 : sp->stride =
1006 0 : (td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel
1007 : : 1);
1008 : tbuf_size =
1009 0 : multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
1010 0 : td->td_rowsperstrip),
1011 : sizeof(uint16_t));
1012 0 : if (tbuf_size == 0)
1013 0 : return (0); /* TODO: this is an error return without error report
1014 : through TIFFErrorExt */
1015 0 : sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size);
1016 0 : if (sp->tbuf == NULL)
1017 0 : return (0);
1018 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
1019 0 : sp->user_datafmt = PixarLogGuessDataFmt(td);
1020 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
1021 : {
1022 0 : TIFFErrorExtR(tif, module,
1023 : "PixarLog compression can't handle %" PRIu16
1024 : " bit linear encodings",
1025 0 : td->td_bitspersample);
1026 0 : return (0);
1027 : }
1028 :
1029 0 : if (deflateInit(&sp->stream, sp->quality) != Z_OK)
1030 : {
1031 0 : TIFFErrorExtR(tif, module, "%s",
1032 0 : sp->stream.msg ? sp->stream.msg : "(null)");
1033 0 : return (0);
1034 : }
1035 : else
1036 : {
1037 0 : sp->state |= PLSTATE_INIT;
1038 0 : return (1);
1039 : }
1040 : }
1041 :
1042 : /*
1043 : * Reset encoding state at the start of a strip.
1044 : */
1045 0 : static int PixarLogPreEncode(TIFF *tif, uint16_t s)
1046 : {
1047 : static const char module[] = "PixarLogPreEncode";
1048 0 : PixarLogState *sp = PixarLogEncoderState(tif);
1049 :
1050 : (void)s;
1051 0 : assert(sp != NULL);
1052 0 : sp->stream.next_out = tif->tif_rawdata;
1053 : assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised,
1054 : we need to simplify this code to reflect a ZLib that is likely updated
1055 : to deal with 8byte memory sizes, though this code will respond
1056 : appropriately even before we simplify it */
1057 0 : sp->stream.avail_out = (uInt)tif->tif_rawdatasize;
1058 0 : if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
1059 : {
1060 0 : TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
1061 0 : return (0);
1062 : }
1063 0 : return (deflateReset(&sp->stream) == Z_OK);
1064 : }
1065 :
1066 0 : static void horizontalDifferenceF(float *ip, int n, int stride, uint16_t *wp,
1067 : uint16_t *FromLT2)
1068 : {
1069 : int32_t r1, g1, b1, a1, r2, g2, b2, a2, mask;
1070 0 : float fltsize = Fltsize;
1071 :
1072 : #define CLAMP(v) \
1073 : ((v < (float)0.) ? 0 \
1074 : : (v < (float)2.) ? FromLT2[(int)(v * fltsize)] \
1075 : : (v > (float)24.2) ? 2047 \
1076 : : LogK1 * log(v * LogK2) + 0.5)
1077 :
1078 0 : mask = CODE_MASK;
1079 0 : if (n >= stride)
1080 : {
1081 0 : if (stride == 3)
1082 : {
1083 0 : r2 = wp[0] = (uint16_t)CLAMP(ip[0]);
1084 0 : g2 = wp[1] = (uint16_t)CLAMP(ip[1]);
1085 0 : b2 = wp[2] = (uint16_t)CLAMP(ip[2]);
1086 0 : n -= 3;
1087 0 : while (n > 0)
1088 : {
1089 0 : n -= 3;
1090 0 : wp += 3;
1091 0 : ip += 3;
1092 0 : r1 = (int32_t)CLAMP(ip[0]);
1093 0 : wp[0] = (uint16_t)((r1 - r2) & mask);
1094 0 : r2 = r1;
1095 0 : g1 = (int32_t)CLAMP(ip[1]);
1096 0 : wp[1] = (uint16_t)((g1 - g2) & mask);
1097 0 : g2 = g1;
1098 0 : b1 = (int32_t)CLAMP(ip[2]);
1099 0 : wp[2] = (uint16_t)((b1 - b2) & mask);
1100 0 : b2 = b1;
1101 : }
1102 : }
1103 0 : else if (stride == 4)
1104 : {
1105 0 : r2 = wp[0] = (uint16_t)CLAMP(ip[0]);
1106 0 : g2 = wp[1] = (uint16_t)CLAMP(ip[1]);
1107 0 : b2 = wp[2] = (uint16_t)CLAMP(ip[2]);
1108 0 : a2 = wp[3] = (uint16_t)CLAMP(ip[3]);
1109 0 : n -= 4;
1110 0 : while (n > 0)
1111 : {
1112 0 : n -= 4;
1113 0 : wp += 4;
1114 0 : ip += 4;
1115 0 : r1 = (int32_t)CLAMP(ip[0]);
1116 0 : wp[0] = (uint16_t)((r1 - r2) & mask);
1117 0 : r2 = r1;
1118 0 : g1 = (int32_t)CLAMP(ip[1]);
1119 0 : wp[1] = (uint16_t)((g1 - g2) & mask);
1120 0 : g2 = g1;
1121 0 : b1 = (int32_t)CLAMP(ip[2]);
1122 0 : wp[2] = (uint16_t)((b1 - b2) & mask);
1123 0 : b2 = b1;
1124 0 : a1 = (int32_t)CLAMP(ip[3]);
1125 0 : wp[3] = (uint16_t)((a1 - a2) & mask);
1126 0 : a2 = a1;
1127 : }
1128 : }
1129 : else
1130 : {
1131 0 : REPEAT(stride, wp[0] = (uint16_t)CLAMP(ip[0]); wp++; ip++)
1132 0 : n -= stride;
1133 0 : while (n > 0)
1134 : {
1135 0 : REPEAT(stride,
1136 : wp[0] = (uint16_t)(((int32_t)CLAMP(ip[0]) -
1137 : (int32_t)CLAMP(ip[-stride])) &
1138 : mask);
1139 : wp++; ip++)
1140 0 : n -= stride;
1141 : }
1142 : }
1143 : }
1144 0 : }
1145 :
1146 0 : static void horizontalDifference16(unsigned short *ip, int n, int stride,
1147 : unsigned short *wp, uint16_t *From14)
1148 : {
1149 : register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1150 :
1151 : /* assumption is unsigned pixel values */
1152 : #undef CLAMP
1153 : #define CLAMP(v) From14[(v) >> 2]
1154 :
1155 0 : mask = CODE_MASK;
1156 0 : if (n >= stride)
1157 : {
1158 0 : if (stride == 3)
1159 : {
1160 0 : r2 = wp[0] = CLAMP(ip[0]);
1161 0 : g2 = wp[1] = CLAMP(ip[1]);
1162 0 : b2 = wp[2] = CLAMP(ip[2]);
1163 0 : n -= 3;
1164 0 : while (n > 0)
1165 : {
1166 0 : n -= 3;
1167 0 : wp += 3;
1168 0 : ip += 3;
1169 0 : r1 = CLAMP(ip[0]);
1170 0 : wp[0] = (uint16_t)((r1 - r2) & mask);
1171 0 : r2 = r1;
1172 0 : g1 = CLAMP(ip[1]);
1173 0 : wp[1] = (uint16_t)((g1 - g2) & mask);
1174 0 : g2 = g1;
1175 0 : b1 = CLAMP(ip[2]);
1176 0 : wp[2] = (uint16_t)((b1 - b2) & mask);
1177 0 : b2 = b1;
1178 : }
1179 : }
1180 0 : else if (stride == 4)
1181 : {
1182 0 : r2 = wp[0] = CLAMP(ip[0]);
1183 0 : g2 = wp[1] = CLAMP(ip[1]);
1184 0 : b2 = wp[2] = CLAMP(ip[2]);
1185 0 : a2 = wp[3] = CLAMP(ip[3]);
1186 0 : n -= 4;
1187 0 : while (n > 0)
1188 : {
1189 0 : n -= 4;
1190 0 : wp += 4;
1191 0 : ip += 4;
1192 0 : r1 = CLAMP(ip[0]);
1193 0 : wp[0] = (uint16_t)((r1 - r2) & mask);
1194 0 : r2 = r1;
1195 0 : g1 = CLAMP(ip[1]);
1196 0 : wp[1] = (uint16_t)((g1 - g2) & mask);
1197 0 : g2 = g1;
1198 0 : b1 = CLAMP(ip[2]);
1199 0 : wp[2] = (uint16_t)((b1 - b2) & mask);
1200 0 : b2 = b1;
1201 0 : a1 = CLAMP(ip[3]);
1202 0 : wp[3] = (uint16_t)((a1 - a2) & mask);
1203 0 : a2 = a1;
1204 : }
1205 : }
1206 : else
1207 : {
1208 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1209 0 : n -= stride;
1210 0 : while (n > 0)
1211 : {
1212 0 : REPEAT(stride,
1213 : wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) &
1214 : mask);
1215 : wp++; ip++)
1216 0 : n -= stride;
1217 : }
1218 : }
1219 : }
1220 0 : }
1221 :
1222 0 : static void horizontalDifference8(unsigned char *ip, int n, int stride,
1223 : unsigned short *wp, uint16_t *From8)
1224 : {
1225 : register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1226 :
1227 : #undef CLAMP
1228 : #define CLAMP(v) (From8[(v)])
1229 :
1230 0 : mask = CODE_MASK;
1231 0 : if (n >= stride)
1232 : {
1233 0 : if (stride == 3)
1234 : {
1235 0 : r2 = wp[0] = CLAMP(ip[0]);
1236 0 : g2 = wp[1] = CLAMP(ip[1]);
1237 0 : b2 = wp[2] = CLAMP(ip[2]);
1238 0 : n -= 3;
1239 0 : while (n > 0)
1240 : {
1241 0 : n -= 3;
1242 0 : r1 = CLAMP(ip[3]);
1243 0 : wp[3] = (uint16_t)((r1 - r2) & mask);
1244 0 : r2 = r1;
1245 0 : g1 = CLAMP(ip[4]);
1246 0 : wp[4] = (uint16_t)((g1 - g2) & mask);
1247 0 : g2 = g1;
1248 0 : b1 = CLAMP(ip[5]);
1249 0 : wp[5] = (uint16_t)((b1 - b2) & mask);
1250 0 : b2 = b1;
1251 0 : wp += 3;
1252 0 : ip += 3;
1253 : }
1254 : }
1255 0 : else if (stride == 4)
1256 : {
1257 0 : r2 = wp[0] = CLAMP(ip[0]);
1258 0 : g2 = wp[1] = CLAMP(ip[1]);
1259 0 : b2 = wp[2] = CLAMP(ip[2]);
1260 0 : a2 = wp[3] = CLAMP(ip[3]);
1261 0 : n -= 4;
1262 0 : while (n > 0)
1263 : {
1264 0 : n -= 4;
1265 0 : r1 = CLAMP(ip[4]);
1266 0 : wp[4] = (uint16_t)((r1 - r2) & mask);
1267 0 : r2 = r1;
1268 0 : g1 = CLAMP(ip[5]);
1269 0 : wp[5] = (uint16_t)((g1 - g2) & mask);
1270 0 : g2 = g1;
1271 0 : b1 = CLAMP(ip[6]);
1272 0 : wp[6] = (uint16_t)((b1 - b2) & mask);
1273 0 : b2 = b1;
1274 0 : a1 = CLAMP(ip[7]);
1275 0 : wp[7] = (uint16_t)((a1 - a2) & mask);
1276 0 : a2 = a1;
1277 0 : wp += 4;
1278 0 : ip += 4;
1279 : }
1280 : }
1281 : else
1282 : {
1283 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1284 0 : n -= stride;
1285 0 : while (n > 0)
1286 : {
1287 0 : REPEAT(stride,
1288 : wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) &
1289 : mask);
1290 : wp++; ip++)
1291 0 : n -= stride;
1292 : }
1293 : }
1294 : }
1295 0 : }
1296 :
1297 : /*
1298 : * Encode a chunk of pixels.
1299 : */
1300 0 : static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s)
1301 : {
1302 : static const char module[] = "PixarLogEncode";
1303 0 : TIFFDirectory *td = &tif->tif_dir;
1304 0 : PixarLogState *sp = PixarLogEncoderState(tif);
1305 : tmsize_t i;
1306 : tmsize_t n;
1307 : int llen;
1308 : unsigned short *up;
1309 :
1310 : (void)s;
1311 :
1312 0 : switch (sp->user_datafmt)
1313 : {
1314 0 : case PIXARLOGDATAFMT_FLOAT:
1315 0 : n = cc / sizeof(float); /* XXX float == 32 bits */
1316 0 : break;
1317 0 : case PIXARLOGDATAFMT_16BIT:
1318 : case PIXARLOGDATAFMT_12BITPICIO:
1319 : case PIXARLOGDATAFMT_11BITLOG:
1320 0 : n = cc / sizeof(uint16_t); /* XXX uint16_t == 16 bits */
1321 0 : break;
1322 0 : case PIXARLOGDATAFMT_8BIT:
1323 : case PIXARLOGDATAFMT_8BITABGR:
1324 0 : n = cc;
1325 0 : break;
1326 0 : default:
1327 0 : TIFFErrorExtR(tif, module,
1328 : "%" PRIu16 " bit input not supported in PixarLog",
1329 0 : td->td_bitspersample);
1330 0 : return 0;
1331 : }
1332 :
1333 0 : llen = sp->stride * td->td_imagewidth;
1334 : /* Check against the number of elements (of size uint16_t) of sp->tbuf */
1335 0 : if (n > ((tmsize_t)td->td_rowsperstrip * llen))
1336 : {
1337 0 : TIFFErrorExtR(tif, module, "Too many input bytes provided");
1338 0 : return 0;
1339 : }
1340 :
1341 0 : for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen)
1342 : {
1343 0 : switch (sp->user_datafmt)
1344 : {
1345 0 : case PIXARLOGDATAFMT_FLOAT:
1346 0 : horizontalDifferenceF((float *)bp, llen, sp->stride, up,
1347 : sp->FromLT2);
1348 0 : bp += llen * sizeof(float);
1349 0 : break;
1350 0 : case PIXARLOGDATAFMT_16BIT:
1351 0 : horizontalDifference16((uint16_t *)bp, llen, sp->stride, up,
1352 : sp->From14);
1353 0 : bp += llen * sizeof(uint16_t);
1354 0 : break;
1355 0 : case PIXARLOGDATAFMT_8BIT:
1356 0 : horizontalDifference8((unsigned char *)bp, llen, sp->stride, up,
1357 : sp->From8);
1358 0 : bp += llen * sizeof(unsigned char);
1359 0 : break;
1360 0 : default:
1361 0 : TIFFErrorExtR(tif, module,
1362 : "%" PRIu16 " bit input not supported in PixarLog",
1363 0 : td->td_bitspersample);
1364 0 : return 0;
1365 : }
1366 : }
1367 :
1368 0 : sp->stream.next_in = (unsigned char *)sp->tbuf;
1369 : assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised,
1370 : we need to simplify this code to reflect a ZLib that is likely updated
1371 : to deal with 8byte memory sizes, though this code will respond
1372 : appropriately even before we simplify it */
1373 0 : sp->stream.avail_in = (uInt)(n * sizeof(uint16_t));
1374 0 : if ((sp->stream.avail_in / sizeof(uint16_t)) != (uInt)n)
1375 : {
1376 0 : TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
1377 0 : return (0);
1378 : }
1379 :
1380 : do
1381 : {
1382 0 : if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK)
1383 : {
1384 0 : TIFFErrorExtR(tif, module, "Encoder error: %s",
1385 0 : sp->stream.msg ? sp->stream.msg : "(null)");
1386 0 : return (0);
1387 : }
1388 0 : if (sp->stream.avail_out == 0)
1389 : {
1390 0 : tif->tif_rawcc = tif->tif_rawdatasize;
1391 0 : if (!TIFFFlushData1(tif))
1392 0 : return 0;
1393 0 : sp->stream.next_out = tif->tif_rawdata;
1394 0 : sp->stream.avail_out =
1395 0 : (uInt)tif
1396 0 : ->tif_rawdatasize; /* this is a safe typecast, as check is
1397 : made already in PixarLogPreEncode */
1398 : }
1399 0 : } while (sp->stream.avail_in > 0);
1400 0 : return (1);
1401 : }
1402 :
1403 : /*
1404 : * Finish off an encoded strip by flushing the last
1405 : * string and tacking on an End Of Information code.
1406 : */
1407 :
1408 0 : static int PixarLogPostEncode(TIFF *tif)
1409 : {
1410 : static const char module[] = "PixarLogPostEncode";
1411 0 : PixarLogState *sp = PixarLogEncoderState(tif);
1412 : int state;
1413 :
1414 0 : sp->stream.avail_in = 0;
1415 :
1416 : do
1417 : {
1418 0 : state = deflate(&sp->stream, Z_FINISH);
1419 0 : switch (state)
1420 : {
1421 0 : case Z_STREAM_END:
1422 : case Z_OK:
1423 0 : if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
1424 : {
1425 0 : tif->tif_rawcc =
1426 0 : tif->tif_rawdatasize - sp->stream.avail_out;
1427 0 : if (!TIFFFlushData1(tif))
1428 0 : return 0;
1429 0 : sp->stream.next_out = tif->tif_rawdata;
1430 0 : sp->stream.avail_out =
1431 0 : (uInt)tif->tif_rawdatasize; /* this is a safe typecast,
1432 : as check is made already
1433 : in PixarLogPreEncode */
1434 : }
1435 0 : break;
1436 0 : default:
1437 0 : TIFFErrorExtR(tif, module, "ZLib error: %s",
1438 0 : sp->stream.msg ? sp->stream.msg : "(null)");
1439 0 : return (0);
1440 : }
1441 0 : } while (state != Z_STREAM_END);
1442 0 : return (1);
1443 : }
1444 :
1445 0 : static void PixarLogClose(TIFF *tif)
1446 : {
1447 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1448 0 : TIFFDirectory *td = &tif->tif_dir;
1449 :
1450 0 : assert(sp != 0);
1451 : /* In a really sneaky (and really incorrect, and untruthful, and
1452 : * troublesome, and error-prone) maneuver that completely goes against
1453 : * the spirit of TIFF, and breaks TIFF, on close, we covertly
1454 : * modify both bitspersample and sampleformat in the directory to
1455 : * indicate 8-bit linear. This way, the decode "just works" even for
1456 : * readers that don't know about PixarLog, or how to set
1457 : * the PIXARLOGDATFMT pseudo-tag.
1458 : */
1459 :
1460 0 : if (sp->state & PLSTATE_INIT)
1461 : {
1462 : /* We test the state to avoid an issue such as in
1463 : * http://bugzilla.maptools.org/show_bug.cgi?id=2604
1464 : * What appends in that case is that the bitspersample is 1 and
1465 : * a TransferFunction is set. The size of the TransferFunction
1466 : * depends on 1<<bitspersample. So if we increase it, an access
1467 : * out of the buffer will happen at directory flushing.
1468 : * Another option would be to clear those targs.
1469 : */
1470 0 : td->td_bitspersample = 8;
1471 0 : td->td_sampleformat = SAMPLEFORMAT_UINT;
1472 : }
1473 0 : }
1474 :
1475 0 : static void PixarLogCleanup(TIFF *tif)
1476 : {
1477 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1478 :
1479 0 : assert(sp != 0);
1480 :
1481 0 : (void)TIFFPredictorCleanup(tif);
1482 :
1483 0 : tif->tif_tagmethods.vgetfield = sp->vgetparent;
1484 0 : tif->tif_tagmethods.vsetfield = sp->vsetparent;
1485 :
1486 0 : if (sp->FromLT2)
1487 0 : _TIFFfreeExt(tif, sp->FromLT2);
1488 0 : if (sp->From14)
1489 0 : _TIFFfreeExt(tif, sp->From14);
1490 0 : if (sp->From8)
1491 0 : _TIFFfreeExt(tif, sp->From8);
1492 0 : if (sp->ToLinearF)
1493 0 : _TIFFfreeExt(tif, sp->ToLinearF);
1494 0 : if (sp->ToLinear16)
1495 0 : _TIFFfreeExt(tif, sp->ToLinear16);
1496 0 : if (sp->ToLinear8)
1497 0 : _TIFFfreeExt(tif, sp->ToLinear8);
1498 0 : if (sp->state & PLSTATE_INIT)
1499 : {
1500 0 : if (tif->tif_mode == O_RDONLY)
1501 0 : inflateEnd(&sp->stream);
1502 : else
1503 0 : deflateEnd(&sp->stream);
1504 : }
1505 0 : if (sp->tbuf)
1506 0 : _TIFFfreeExt(tif, sp->tbuf);
1507 0 : _TIFFfreeExt(tif, sp);
1508 0 : tif->tif_data = NULL;
1509 :
1510 0 : _TIFFSetDefaultCompressionState(tif);
1511 0 : }
1512 :
1513 0 : static int PixarLogVSetField(TIFF *tif, uint32_t tag, va_list ap)
1514 : {
1515 : static const char module[] = "PixarLogVSetField";
1516 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1517 : int result;
1518 :
1519 0 : switch (tag)
1520 : {
1521 0 : case TIFFTAG_PIXARLOGQUALITY:
1522 0 : sp->quality = (int)va_arg(ap, int);
1523 0 : if (tif->tif_mode != O_RDONLY && (sp->state & PLSTATE_INIT))
1524 : {
1525 0 : if (deflateParams(&sp->stream, sp->quality,
1526 : Z_DEFAULT_STRATEGY) != Z_OK)
1527 : {
1528 0 : TIFFErrorExtR(tif, module, "ZLib error: %s",
1529 0 : sp->stream.msg ? sp->stream.msg : "(null)");
1530 0 : return (0);
1531 : }
1532 : }
1533 0 : return (1);
1534 0 : case TIFFTAG_PIXARLOGDATAFMT:
1535 0 : sp->user_datafmt = (int)va_arg(ap, int);
1536 : /* Tweak the TIFF header so that the rest of libtiff knows what
1537 : * size of data will be passed between app and library, and
1538 : * assume that the app knows what it is doing and is not
1539 : * confused by these header manipulations...
1540 : */
1541 0 : switch (sp->user_datafmt)
1542 : {
1543 0 : case PIXARLOGDATAFMT_8BIT:
1544 : case PIXARLOGDATAFMT_8BITABGR:
1545 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1546 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1547 0 : break;
1548 0 : case PIXARLOGDATAFMT_11BITLOG:
1549 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1550 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1551 0 : break;
1552 0 : case PIXARLOGDATAFMT_12BITPICIO:
1553 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1554 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1555 0 : break;
1556 0 : case PIXARLOGDATAFMT_16BIT:
1557 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1558 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1559 0 : break;
1560 0 : case PIXARLOGDATAFMT_FLOAT:
1561 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1562 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT,
1563 : SAMPLEFORMAT_IEEEFP);
1564 0 : break;
1565 : }
1566 : /*
1567 : * Must recalculate sizes should bits/sample change.
1568 : */
1569 0 : tif->tif_tilesize =
1570 0 : isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
1571 0 : tif->tif_scanlinesize = TIFFScanlineSize(tif);
1572 0 : result = 1; /* NB: pseudo tag */
1573 0 : break;
1574 0 : default:
1575 0 : result = (*sp->vsetparent)(tif, tag, ap);
1576 : }
1577 0 : return (result);
1578 : }
1579 :
1580 0 : static int PixarLogVGetField(TIFF *tif, uint32_t tag, va_list ap)
1581 : {
1582 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1583 :
1584 0 : switch (tag)
1585 : {
1586 0 : case TIFFTAG_PIXARLOGQUALITY:
1587 0 : *va_arg(ap, int *) = sp->quality;
1588 0 : break;
1589 0 : case TIFFTAG_PIXARLOGDATAFMT:
1590 0 : *va_arg(ap, int *) = sp->user_datafmt;
1591 0 : break;
1592 0 : default:
1593 0 : return (*sp->vgetparent)(tif, tag, ap);
1594 : }
1595 0 : return (1);
1596 : }
1597 :
1598 : static const TIFFField pixarlogFields[] = {
1599 : {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, FIELD_PSEUDO,
1600 : FALSE, FALSE, "", NULL},
1601 : {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, FIELD_PSEUDO,
1602 : FALSE, FALSE, "", NULL}};
1603 :
1604 0 : int TIFFInitPixarLog(TIFF *tif, int scheme)
1605 : {
1606 : static const char module[] = "TIFFInitPixarLog";
1607 :
1608 : PixarLogState *sp;
1609 :
1610 : (void)scheme;
1611 0 : assert(scheme == COMPRESSION_PIXARLOG);
1612 :
1613 : /*
1614 : * Merge codec-specific tag information.
1615 : */
1616 0 : if (!_TIFFMergeFields(tif, pixarlogFields, TIFFArrayCount(pixarlogFields)))
1617 : {
1618 0 : TIFFErrorExtR(tif, module,
1619 : "Merging PixarLog codec-specific tags failed");
1620 0 : return 0;
1621 : }
1622 :
1623 : /*
1624 : * Allocate state block so tag methods have storage to record values.
1625 : */
1626 0 : tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(PixarLogState));
1627 0 : if (tif->tif_data == NULL)
1628 0 : goto bad;
1629 0 : sp = (PixarLogState *)tif->tif_data;
1630 0 : _TIFFmemset(sp, 0, sizeof(*sp));
1631 0 : sp->stream.data_type = Z_BINARY;
1632 0 : sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1633 :
1634 : /*
1635 : * Install codec methods.
1636 : */
1637 0 : tif->tif_fixuptags = PixarLogFixupTags;
1638 0 : tif->tif_setupdecode = PixarLogSetupDecode;
1639 0 : tif->tif_predecode = PixarLogPreDecode;
1640 0 : tif->tif_decoderow = PixarLogDecode;
1641 0 : tif->tif_decodestrip = PixarLogDecode;
1642 0 : tif->tif_decodetile = PixarLogDecode;
1643 0 : tif->tif_setupencode = PixarLogSetupEncode;
1644 0 : tif->tif_preencode = PixarLogPreEncode;
1645 0 : tif->tif_postencode = PixarLogPostEncode;
1646 0 : tif->tif_encoderow = PixarLogEncode;
1647 0 : tif->tif_encodestrip = PixarLogEncode;
1648 0 : tif->tif_encodetile = PixarLogEncode;
1649 0 : tif->tif_close = PixarLogClose;
1650 0 : tif->tif_cleanup = PixarLogCleanup;
1651 :
1652 : /* Override SetField so we can handle our private pseudo-tag */
1653 0 : sp->vgetparent = tif->tif_tagmethods.vgetfield;
1654 0 : tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1655 0 : sp->vsetparent = tif->tif_tagmethods.vsetfield;
1656 0 : tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1657 :
1658 : /* Default values for codec-specific fields */
1659 0 : sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1660 0 : sp->state = 0;
1661 :
1662 : /* we don't wish to use the predictor,
1663 : * the default is none, which predictor value 1
1664 : */
1665 0 : (void)TIFFPredictorInit(tif);
1666 :
1667 : /*
1668 : * build the companding tables
1669 : */
1670 0 : PixarLogMakeTables(tif, sp);
1671 :
1672 0 : return (1);
1673 0 : bad:
1674 0 : TIFFErrorExtR(tif, module, "No space for PixarLog state block");
1675 0 : return (0);
1676 : }
1677 : #endif /* PIXARLOG_SUPPORT */
|