LCOV - code coverage report
Current view: top level - frmts/iris - irisdataset.cpp (source / functions) Hit Total Coverage
Test: gdal_filtered.info Lines: 364 567 64.2 %
Date: 2025-01-18 12:42:00 Functions: 16 17 94.1 %

          Line data    Source code
       1             : /******************************************************************************
       2             :  *
       3             :  * Project:  IRIS Reader
       4             :  * Purpose:  All code for IRIS format Reader
       5             :  * Author:   Roger Veciana, rveciana@gmail.com
       6             :  *           Portions are adapted from code copyright (C) 2005-2012
       7             :  *           Chris Veness under a CC-BY 3.0 licence
       8             :  *
       9             :  ******************************************************************************
      10             :  * Copyright (c) 2012, Roger Veciana <rveciana@gmail.com>
      11             :  * Copyright (c) 2012-2013, Even Rouault <even dot rouault at spatialys.com>
      12             :  *
      13             :  * SPDX-License-Identifier: MIT
      14             :  ****************************************************************************/
      15             : 
      16             : #include "cpl_port.h"
      17             : #include "gdal_frmts.h"
      18             : #include "gdal_pam.h"
      19             : #include "ogr_spatialref.h"
      20             : 
      21             : #include <algorithm>
      22             : #include <sstream>
      23             : 
      24             : static double DEG2RAD = M_PI / 180.0;
      25             : static double RAD2DEG = 180.0 / M_PI;
      26             : 
      27             : /************************************************************************/
      28             : /* ==================================================================== */
      29             : /*                                  IRISDataset                         */
      30             : /* ==================================================================== */
      31             : /************************************************************************/
      32             : 
      33             : class IRISRasterBand;
      34             : 
      35             : class IRISDataset final : public GDALPamDataset
      36             : {
      37             :     friend class IRISRasterBand;
      38             : 
      39             :     VSILFILE *fp;
      40             :     GByte abyHeader[640];
      41             :     bool bNoDataSet;
      42             :     double dfNoDataValue;
      43             :     static const char *const aszProductNames[];
      44             :     static const char *const aszDataTypeCodes[];
      45             :     static const char *const aszDataTypes[];
      46             :     static const char *const aszProjections[];
      47             :     unsigned short nProductCode;
      48             :     unsigned short nDataTypeCode;
      49             :     unsigned char nProjectionCode;
      50             :     float fNyquistVelocity;
      51             :     mutable OGRSpatialReference m_oSRS{};
      52             :     mutable double adfGeoTransform[6];
      53             :     mutable bool bHasLoadedProjection;
      54             :     void LoadProjection() const;
      55             :     static bool GeodesicCalculation(double fLat, double fLon, double fAngle,
      56             :                                     double fDist, double fEquatorialRadius,
      57             :                                     double fPolarRadius, double fFlattening,
      58             :                                     std::pair<double, double> &oOutPair);
      59             : 
      60             :   public:
      61             :     IRISDataset();
      62             :     virtual ~IRISDataset();
      63             : 
      64             :     static GDALDataset *Open(GDALOpenInfo *);
      65             :     static int Identify(GDALOpenInfo *);
      66             : 
      67             :     CPLErr GetGeoTransform(double *padfTransform) override;
      68             :     const OGRSpatialReference *GetSpatialRef() const override;
      69             : };
      70             : 
      71             : const char *const IRISDataset::aszProductNames[] = {
      72             :     "",      "PPI",   "RHI",  "CAPPI", "CROSS", "TOPS",  "TRACK",
      73             :     "RAIN1", "RAINN", "VVP",  "VIL",   "SHEAR", "WARN",  "CATCH",
      74             :     "RTI",   "RAW",   "MAX",  "USER",  "USERV", "OTHER", "STATUS",
      75             :     "SLINE", "WIND",  "BEAM", "TEXT",  "FCAST", "NDOP",  "IMAGE",
      76             :     "COMP",  "TDWR",  "GAGE", "DWELL", "SRI",   "BASE",  "HMAX"};
      77             : 
      78             : const char *const IRISDataset::aszDataTypeCodes[] = {
      79             :     "XHDR",     "DBT",       "dBZ",      "VEL",    "WIDTH",   "ZDR",
      80             :     "ORAIN",    "dBZC",      "DBT2",     "dBZ2",   "VEL2",    "WIDTH2",
      81             :     "ZDR2",     "RAINRATE2", "KDP",      "KDP2",   "PHIDP",   "VELC",
      82             :     "SQI",      "RHOHV",     "RHOHV2",   "dBZC2",  "VELC2",   "SQI2",
      83             :     "PHIDP2",   "LDRH",      "LDRH2",    "LDRV",   "LDRV2",   "FLAGS",
      84             :     "FLAGS2",   "FLOAT32",   "HEIGHT",   "VIL2",   "NULL",    "SHEAR",
      85             :     "DIVERGE2", "FLIQUID2",  "USER",     "OTHER",  "DEFORM2", "VVEL2",
      86             :     "HVEL2",    "HDIR2",     "AXDIL2",   "TIME2",  "RHOH",    "RHOH2",
      87             :     "RHOV",     "RHOV2",     "PHIH",     "PHIH2",  "PHIV",    "PHIV2",
      88             :     "USER2",    "HCLASS",    "HCLASS2",  "ZDRC",   "ZDRC2",   "TEMPERATURE16",
      89             :     "VIR16",    "DBTV8",     "DBTV16",   "DBZV8",  "DBZV16",  "SNR8",
      90             :     "SNR16",    "ALBEDO8",   "ALBEDO16", "VILD16", "TURB16"};
      91             : 
      92             : const char *const IRISDataset::aszDataTypes[] = {
      93             :     "Extended Headers",
      94             :     "Total H power (1 byte)",
      95             :     "Clutter Corrected H reflectivity (1 byte)",
      96             :     "Velocity (1 byte)",
      97             :     "Width (1 byte)",
      98             :     "Differential reflectivity (1 byte)",
      99             :     "Old Rainfall rate (stored as dBZ)",
     100             :     "Fully corrected reflectivity (1 byte)",
     101             :     "Uncorrected reflectivity (2 byte)",
     102             :     "Corrected reflectivity (2 byte)",
     103             :     "Velocity (2 byte)",
     104             :     "Width (2 byte)",
     105             :     "Differential reflectivity (2 byte)",
     106             :     "Rainfall rate (2 byte)",
     107             :     "Kdp (specific differential phase)(1 byte)",
     108             :     "Kdp (specific differential phase)(2 byte)",
     109             :     "PHIdp (differential phase)(1 byte)",
     110             :     "Corrected Velocity (1 byte)",
     111             :     "SQI (1 byte)",
     112             :     "RhoHV(0) (1 byte)",
     113             :     "RhoHV(0) (2 byte)",
     114             :     "Fully corrected reflectivity (2 byte)",
     115             :     "Corrected Velocity (2 byte)",
     116             :     "SQI (2 byte)",
     117             :     "PHIdp (differential phase)(2 byte)",
     118             :     "LDR H to V (1 byte)",
     119             :     "LDR H to V (2 byte)",
     120             :     "LDR V to H (1 byte)",
     121             :     "LDR V to H (2 byte)",
     122             :     "Individual flag bits for each bin",
     123             :     "",
     124             :     "Test of floating format",
     125             :     "Height (1/10 km) (1 byte)",
     126             :     "Linear liquid (.001mm) (2 byte)",
     127             :     "Data type is not applicable",
     128             :     "Wind Shear (1 byte)",
     129             :     "Divergence (.001 10**-4) (2-byte)",
     130             :     "Floated liquid (2 byte)",
     131             :     "User type, unspecified data (1 byte)",
     132             :     "Unspecified data, no color legend",
     133             :     "Deformation (.001 10**-4) (2-byte)",
     134             :     "Vertical velocity (.01 m/s) (2-byte)",
     135             :     "Horizontal velocity (.01 m/s) (2-byte)",
     136             :     "Horizontal wind direction (.1 degree) (2-byte)",
     137             :     "Axis of Dillitation (.1 degree) (2-byte)",
     138             :     "Time of data (seconds) (2-byte)",
     139             :     "Rho H to V (1 byte)",
     140             :     "Rho H to V (2 byte)",
     141             :     "Rho V to H (1 byte)",
     142             :     "Rho V to H (2 byte)",
     143             :     "Phi H to V (1 byte)",
     144             :     "Phi H to V (2 byte)",
     145             :     "Phi V to H (1 byte)",
     146             :     "Phi V to H (2 byte)",
     147             :     "User type, unspecified data (2 byte)",
     148             :     "Hydrometeor class (1 byte)",
     149             :     "Hydrometeor class (2 byte)",
     150             :     "Corrected Differential reflectivity (1 byte)",
     151             :     "Corrected Differential reflectivity (2 byte)",
     152             :     "Temperature (2 byte)",
     153             :     "Vertically Integrated Reflectivity (2 byte)",
     154             :     "Total V Power (1 byte)",
     155             :     "Total V Power (2 byte)",
     156             :     "Clutter Corrected V Reflectivity (1 byte)",
     157             :     "Clutter Corrected V Reflectivity (2 byte)",
     158             :     "Signal to Noise ratio (1 byte)",
     159             :     "Signal to Noise ratio (2 byte)",
     160             :     "Albedo (1 byte)",
     161             :     "Albedo (2 byte)",
     162             :     "VIL Density (2 byte)",
     163             :     "Turbulence (2 byte)"};
     164             : 
     165             : const char *const IRISDataset::aszProjections[] = {
     166             :     "Azimutal equidistant", "Mercator", "Polar Stereographic", "UTM",
     167             :     // FIXME: is it a typo here or in IRIS itself: Perspective or Prespective ?
     168             :     "Perspective from geosync", "Equidistant cylindrical", "Gnomonic",
     169             :     "Gauss conformal", "Lambert conformal conic"};
     170             : 
     171             : /************************************************************************/
     172             : /* ==================================================================== */
     173             : /*                            IRISRasterBand                            */
     174             : /* ==================================================================== */
     175             : /************************************************************************/
     176             : 
     177             : class IRISRasterBand final : public GDALPamRasterBand
     178             : {
     179             :     friend class IRISDataset;
     180             : 
     181             :     unsigned char *pszRecord;
     182             :     bool bBufferAllocFailed;
     183             : 
     184             :   public:
     185             :     IRISRasterBand(IRISDataset *, int);
     186             :     virtual ~IRISRasterBand();
     187             : 
     188             :     virtual CPLErr IReadBlock(int, int, void *) override;
     189             : 
     190             :     virtual double GetNoDataValue(int *) override;
     191             :     virtual CPLErr SetNoDataValue(double) override;
     192             : };
     193             : 
     194             : /************************************************************************/
     195             : /*                           IRISRasterBand()                           */
     196             : /************************************************************************/
     197             : 
     198           3 : IRISRasterBand::IRISRasterBand(IRISDataset *poDSIn, int nBandIn)
     199           3 :     : pszRecord(nullptr), bBufferAllocFailed(false)
     200             : {
     201           3 :     poDS = poDSIn;
     202           3 :     nBand = nBandIn;
     203           3 :     eDataType = GDT_Float32;
     204           3 :     nBlockXSize = poDS->GetRasterXSize();
     205           3 :     nBlockYSize = 1;
     206           3 : }
     207             : 
     208           6 : IRISRasterBand::~IRISRasterBand()
     209             : {
     210           3 :     VSIFree(pszRecord);
     211           6 : }
     212             : 
     213             : /************************************************************************/
     214             : /*                             IReadBlock()                             */
     215             : /************************************************************************/
     216             : 
     217         263 : CPLErr IRISRasterBand::IReadBlock(int /* nBlockXOff */, int nBlockYOff,
     218             :                                   void *pImage)
     219             : 
     220             : {
     221         263 :     IRISDataset *poGDS = static_cast<IRISDataset *>(poDS);
     222             : 
     223             :     // Every product type has its own size. TODO: Move it like dataType.
     224         263 :     int nDataLength = 1;
     225         263 :     if (poGDS->nDataTypeCode == 2)
     226         263 :         nDataLength = 1;
     227           0 :     else if (poGDS->nDataTypeCode == 8)
     228           0 :         nDataLength = 2;
     229           0 :     else if (poGDS->nDataTypeCode == 9)
     230           0 :         nDataLength = 2;
     231           0 :     else if (poGDS->nDataTypeCode == 37)
     232           0 :         nDataLength = 2;
     233           0 :     else if (poGDS->nDataTypeCode == 33)
     234           0 :         nDataLength = 2;
     235           0 :     else if (poGDS->nDataTypeCode == 32)
     236           0 :         nDataLength = 1;
     237             : 
     238             :     // We allocate space for storing a record:
     239         263 :     if (pszRecord == nullptr)
     240             :     {
     241           2 :         if (bBufferAllocFailed)
     242           0 :             return CE_Failure;
     243             : 
     244           2 :         pszRecord = static_cast<unsigned char *>(
     245           2 :             VSI_MALLOC_VERBOSE(static_cast<size_t>(nBlockXSize) * nDataLength));
     246             : 
     247           2 :         if (pszRecord == nullptr)
     248             :         {
     249           0 :             bBufferAllocFailed = true;
     250           0 :             return CE_Failure;
     251             :         }
     252             :     }
     253             : 
     254             :     // Prepare to read (640 is the header size in bytes) and read (the
     255             :     // y axis in the IRIS files in the inverse direction).  The
     256             :     // previous bands are also added as an offset
     257             : 
     258         263 :     VSIFSeekL(poGDS->fp,
     259             :               640 +
     260         526 :                   static_cast<vsi_l_offset>(nDataLength) *
     261         263 :                       poGDS->GetRasterXSize() * poGDS->GetRasterYSize() *
     262         526 :                       (this->nBand - 1) +
     263         526 :                   static_cast<vsi_l_offset>(nBlockXSize) * nDataLength *
     264         263 :                       (poGDS->GetRasterYSize() - 1 - nBlockYOff),
     265             :               SEEK_SET);
     266             : 
     267         263 :     if (static_cast<int>(
     268         263 :             VSIFReadL(pszRecord, static_cast<size_t>(nBlockXSize) * nDataLength,
     269         263 :                       1, poGDS->fp)) != 1)
     270           0 :         return CE_Failure;
     271             : 
     272             :     // If datatype is dbZ or dBT:
     273             :     // See point 3.3.3 at page 3.33 of the manual.
     274         263 :     if (poGDS->nDataTypeCode == 2 || poGDS->nDataTypeCode == 1)
     275             :     {
     276       68384 :         for (int i = 0; i < nBlockXSize; i++)
     277             :         {
     278       68121 :             float fVal = ((*(pszRecord + i * nDataLength)) - 64.0f) / 2.0f;
     279       68121 :             if (fVal == 95.5f)
     280           0 :                 fVal = -9999.0f;
     281       68121 :             ((float *)pImage)[i] = fVal;
     282         263 :         }
     283             :         // If datatype is dbZ2 or dBT2:
     284             :         // See point 3.3.4 at page 3.33 of the manual.
     285             :     }
     286           0 :     else if (poGDS->nDataTypeCode == 8 || poGDS->nDataTypeCode == 9)
     287             :     {
     288           0 :         for (int i = 0; i < nBlockXSize; i++)
     289             :         {
     290           0 :             float fVal =
     291           0 :                 (CPL_LSBUINT16PTR(pszRecord + i * nDataLength) - 32768.0f) /
     292             :                 100.0f;
     293           0 :             if (fVal == 327.67f)
     294           0 :                 fVal = -9999.0f;
     295           0 :             ((float *)pImage)[i] = fVal;
     296           0 :         }
     297             :         // Fliquid2 (Rain1 & Rainn products)
     298             :         // See point 3.3.11 at page 3.43 of the manual.
     299             :     }
     300           0 :     else if (poGDS->nDataTypeCode == 37)
     301             :     {
     302           0 :         for (int i = 0; i < nBlockXSize; i++)
     303             :         {
     304           0 :             const unsigned short nVal =
     305           0 :                 CPL_LSBUINT16PTR(pszRecord + i * nDataLength);
     306           0 :             const unsigned short nExp = nVal >> 12;
     307           0 :             const unsigned short nMantissa = nVal - (nExp << 12);
     308           0 :             float fVal2 = 0.0f;
     309           0 :             if (nVal == 65535)
     310           0 :                 fVal2 = -9999.0f;
     311           0 :             else if (nExp == 0)
     312           0 :                 fVal2 = nMantissa / 1000.0f;
     313             :             else
     314           0 :                 fVal2 = ((nMantissa + 4096) << (nExp - 1)) / 1000.0f;
     315           0 :             ((float *)pImage)[i] = fVal2;
     316             :         }
     317             :         // VIL2 (VIL products)
     318             :         // See point 3.3.41 at page 3.54 of the manual.
     319             :     }
     320           0 :     else if (poGDS->nDataTypeCode == 33)
     321             :     {
     322           0 :         for (int i = 0; i < nBlockXSize; i++)
     323             :         {
     324           0 :             float fVal = static_cast<float>(
     325           0 :                 CPL_LSBUINT16PTR(pszRecord + i * nDataLength));
     326           0 :             if (fVal == 65535.0f)
     327           0 :                 ((float *)pImage)[i] = -9999.0f;
     328           0 :             else if (fVal == 0.0f)
     329           0 :                 ((float *)pImage)[i] = -1.0f;
     330             :             else
     331           0 :                 ((float *)pImage)[i] = (fVal - 1) / 1000.0f;
     332             :         }
     333             :         // HEIGHT (TOPS products)
     334             :         // See point 3.3.14 at page 3.46 of the manual.
     335             :     }
     336           0 :     else if (poGDS->nDataTypeCode == 32)
     337             :     {
     338           0 :         for (int i = 0; i < nBlockXSize; i++)
     339             :         {
     340           0 :             unsigned char nVal = *(pszRecord + i * nDataLength);
     341           0 :             if (nVal == 255)
     342           0 :                 ((float *)pImage)[i] = -9999.0f;
     343           0 :             else if (nVal == 0)
     344           0 :                 ((float *)pImage)[i] = -1.0f;
     345             :             else
     346           0 :                 ((float *)pImage)[i] = (nVal - 1.0f) / 10.0f;
     347             :         }
     348             :         // VEL (Velocity 1-Byte in PPI & others)
     349             :         // See point 3.3.37 at page 3.53 of the manual.
     350             :     }
     351           0 :     else if (poGDS->nDataTypeCode == 3)
     352             :     {
     353           0 :         for (int i = 0; i < nBlockXSize; i++)
     354             :         {
     355           0 :             float fVal = static_cast<float>(*(pszRecord + i * nDataLength));
     356           0 :             if (fVal == 0.0f)
     357           0 :                 fVal = -9997.0f;
     358           0 :             else if (fVal == 1.0f)
     359           0 :                 fVal = -9998.0f;
     360           0 :             else if (fVal == 255.0f)
     361           0 :                 fVal = -9999.0f;
     362             :             else
     363           0 :                 fVal = poGDS->fNyquistVelocity * (fVal - 128.0f) / 127.0f;
     364           0 :             ((float *)pImage)[i] = fVal;
     365             :         }
     366             :         // SHEAR (1-Byte Shear)
     367             :         // See point 3.3.23 at page 3.39 of the manual.
     368             :     }
     369           0 :     else if (poGDS->nDataTypeCode == 35)
     370             :     {
     371           0 :         for (int i = 0; i < nBlockXSize; i++)
     372             :         {
     373           0 :             float fVal = static_cast<float>(*(pszRecord + i * nDataLength));
     374           0 :             if (fVal == 0.0f)
     375           0 :                 fVal = -9998.0f;
     376           0 :             else if (fVal == 255.0f)
     377           0 :                 fVal = -9999.0f;
     378             :             else
     379           0 :                 fVal = (fVal - 128.0f) * 0.2f;
     380           0 :             ((float *)pImage)[i] = fVal;
     381             :         }
     382             :     }
     383             : 
     384         263 :     return CE_None;
     385             : }
     386             : 
     387             : /************************************************************************/
     388             : /*                           SetNoDataValue()                           */
     389             : /************************************************************************/
     390             : 
     391           3 : CPLErr IRISRasterBand::SetNoDataValue(double dfNoData)
     392             : 
     393             : {
     394           3 :     IRISDataset *poGDS = static_cast<IRISDataset *>(poDS);
     395             : 
     396           3 :     poGDS->bNoDataSet = true;
     397           3 :     poGDS->dfNoDataValue = dfNoData;
     398             : 
     399           3 :     return CE_None;
     400             : }
     401             : 
     402             : /************************************************************************/
     403             : /*                           GetNoDataValue()                           */
     404             : /************************************************************************/
     405             : 
     406           0 : double IRISRasterBand::GetNoDataValue(int *pbSuccess)
     407             : 
     408             : {
     409           0 :     IRISDataset *poGDS = static_cast<IRISDataset *>(poDS);
     410             : 
     411           0 :     if (poGDS->bNoDataSet)
     412             :     {
     413           0 :         if (pbSuccess)
     414           0 :             *pbSuccess = TRUE;
     415             : 
     416           0 :         return poGDS->dfNoDataValue;
     417             :     }
     418             : 
     419           0 :     return GDALPamRasterBand::GetNoDataValue(pbSuccess);
     420             : }
     421             : 
     422             : /************************************************************************/
     423             : /* ==================================================================== */
     424             : /*                              IRISDataset                             */
     425             : /* ==================================================================== */
     426             : /************************************************************************/
     427             : 
     428             : /************************************************************************/
     429             : /*                            IRISDataset()                             */
     430             : /************************************************************************/
     431             : 
     432           3 : IRISDataset::IRISDataset()
     433             :     : fp(nullptr), bNoDataSet(false), dfNoDataValue(0.0), nProductCode(0),
     434             :       nDataTypeCode(0), nProjectionCode(0), fNyquistVelocity(0.0),
     435           3 :       bHasLoadedProjection(false)
     436             : {
     437           3 :     m_oSRS.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER);
     438           3 :     std::fill_n(abyHeader, CPL_ARRAYSIZE(abyHeader), static_cast<GByte>(0));
     439           3 :     adfGeoTransform[0] = 0.0;
     440           3 :     adfGeoTransform[1] = 1.0;
     441           3 :     adfGeoTransform[2] = 0.0;
     442           3 :     adfGeoTransform[3] = 0.0;
     443           3 :     adfGeoTransform[4] = 0.0;
     444           3 :     adfGeoTransform[5] = 1.0;
     445           3 : }
     446             : 
     447             : /************************************************************************/
     448             : /*                           ~IRISDataset()                             */
     449             : /************************************************************************/
     450             : 
     451           6 : IRISDataset::~IRISDataset()
     452             : 
     453             : {
     454           3 :     FlushCache(true);
     455           3 :     if (fp != nullptr)
     456           3 :         VSIFCloseL(fp);
     457           6 : }
     458             : 
     459             : /************************************************************************/
     460             : /*           Calculates the projection and Geotransform                 */
     461             : /************************************************************************/
     462           1 : void IRISDataset::LoadProjection() const
     463             : {
     464           1 :     bHasLoadedProjection = true;
     465             :     // They give the radius in cm.
     466           1 :     double dfEquatorialRadius =
     467           1 :         CPL_LSBUINT32PTR(abyHeader + 220 + 320 + 12) / 100.0;
     468             :     // Point 3.2.27 pag 3-15.
     469           1 :     double dfInvFlattening =
     470           1 :         CPL_LSBUINT32PTR(abyHeader + 224 + 320 + 12) / 1000000.0;
     471           1 :     double dfFlattening = 0.0;
     472           1 :     double dfPolarRadius = 0.0;
     473             : 
     474           1 :     if (dfEquatorialRadius == 0.0)
     475             :     {
     476             :         // If Radius is 0, change to 6371000 Point 3.2.27 pag 3-15 (old IRIS
     477             :         // versions).
     478           0 :         dfEquatorialRadius = 6371000.0;
     479           0 :         dfPolarRadius = dfEquatorialRadius;
     480           0 :         dfInvFlattening = 0.0;
     481           0 :         dfFlattening = 0.0;
     482             :     }
     483             :     else
     484             :     {
     485           1 :         if (dfInvFlattening == 0.0)
     486             :         {
     487             :             // When inverse flattening is infinite, they use 0.
     488           1 :             dfFlattening = 0.0;
     489           1 :             dfPolarRadius = dfEquatorialRadius;
     490             :         }
     491             :         else
     492             :         {
     493           0 :             dfFlattening = 1.0 / dfInvFlattening;
     494           0 :             dfPolarRadius = dfEquatorialRadius * (1.0 - dfFlattening);
     495             :         }
     496             :     }
     497             : 
     498           1 :     constexpr GUInt32 knUINT32_MAX = 0xFFFFFFFFU;
     499           1 :     const double dfCenterLon =
     500           1 :         CPL_LSBUINT32PTR(abyHeader + 112 + 320 + 12) * 360.0 / knUINT32_MAX;
     501           1 :     const double dfCenterLat =
     502           1 :         CPL_LSBUINT32PTR(abyHeader + 108 + 320 + 12) * 360.0 / knUINT32_MAX;
     503             : 
     504           1 :     const double dfProjRefLon =
     505           1 :         CPL_LSBUINT32PTR(abyHeader + 244 + 320 + 12) * 360.0 / knUINT32_MAX;
     506           1 :     const double dfProjRefLat =
     507           1 :         CPL_LSBUINT32PTR(abyHeader + 240 + 320 + 12) * 360.0 / knUINT32_MAX;
     508             : 
     509           1 :     const double dfRadarLocX = CPL_LSBSINT32PTR(abyHeader + 112 + 12) / 1000.0;
     510           1 :     const double dfRadarLocY = CPL_LSBSINT32PTR(abyHeader + 116 + 12) / 1000.0;
     511             : 
     512           1 :     const double dfScaleX = CPL_LSBSINT32PTR(abyHeader + 88 + 12) / 100.0;
     513           1 :     const double dfScaleY = CPL_LSBSINT32PTR(abyHeader + 92 + 12) / 100.0;
     514           1 :     if (dfScaleX <= 0.0 || dfScaleY <= 0.0 || dfScaleX >= dfPolarRadius ||
     515             :         dfScaleY >= dfPolarRadius)
     516           0 :         return;
     517             : 
     518             :     // Mercator projection.
     519           1 :     if (EQUAL(aszProjections[nProjectionCode], "Mercator"))
     520             :     {
     521           1 :         std::pair<double, double> oPositionX2;
     522           1 :         if (!GeodesicCalculation(dfCenterLat, dfCenterLon, 90.0, dfScaleX,
     523             :                                  dfEquatorialRadius, dfPolarRadius,
     524             :                                  dfFlattening, oPositionX2))
     525           0 :             return;
     526           1 :         std::pair<double, double> oPositionY2;
     527           1 :         if (!GeodesicCalculation(dfCenterLat, dfCenterLon, 0.0, dfScaleY,
     528             :                                  dfEquatorialRadius, dfPolarRadius,
     529             :                                  dfFlattening, oPositionY2))
     530           0 :             return;
     531             : 
     532           1 :         m_oSRS.SetGeogCS("unnamed ellipse", "unknown", "unnamed",
     533             :                          dfEquatorialRadius, dfInvFlattening, "Greenwich", 0.0,
     534             :                          "degree", 0.0174532925199433);
     535             : 
     536           1 :         m_oSRS.SetMercator(dfProjRefLat, dfProjRefLon, 1.0, 0.0, 0.0);
     537           1 :         m_oSRS.SetLinearUnits("Metre", 1.0);
     538             : 
     539             :         // The center coordinates are given in LatLon on the defined
     540             :         // ellipsoid. Necessary to calculate geotransform.
     541             : 
     542           2 :         OGRSpatialReference oSRSLatLon;
     543           1 :         oSRSLatLon.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER);
     544           1 :         oSRSLatLon.SetGeogCS("unnamed ellipse", "unknown", "unnamed",
     545             :                              dfEquatorialRadius, dfInvFlattening, "Greenwich",
     546             :                              0.0, "degree", 0.0174532925199433);
     547             : 
     548             :         OGRCoordinateTransformation *poTransform =
     549           1 :             OGRCreateCoordinateTransformation(&oSRSLatLon, &m_oSRS);
     550             : 
     551           1 :         const double dfLon2 = oPositionX2.first;
     552           1 :         const double dfLat2 = oPositionY2.second;
     553             : 
     554           1 :         double dfX = dfCenterLon;
     555           1 :         double dfY = dfCenterLat;
     556           1 :         if (poTransform == nullptr || !poTransform->Transform(1, &dfX, &dfY))
     557           0 :             CPLError(CE_Failure, CPLE_None, "Transformation Failed");
     558             : 
     559           1 :         double dfX2 = dfLon2;
     560           1 :         double dfY2 = dfLat2;
     561           1 :         if (poTransform == nullptr || !poTransform->Transform(1, &dfX2, &dfY2))
     562           0 :             CPLError(CE_Failure, CPLE_None, "Transformation Failed");
     563             : 
     564           1 :         adfGeoTransform[0] = dfX - (dfRadarLocX * (dfX2 - dfX));
     565           1 :         adfGeoTransform[1] = dfX2 - dfX;
     566           1 :         adfGeoTransform[2] = 0.0;
     567           1 :         adfGeoTransform[3] = dfY + (dfRadarLocY * (dfY2 - dfY));
     568           1 :         adfGeoTransform[4] = 0.0;
     569           1 :         adfGeoTransform[5] = -1 * (dfY2 - dfY);
     570             : 
     571           1 :         delete poTransform;
     572             :     }
     573           0 :     else if (EQUAL(aszProjections[nProjectionCode], "Azimutal equidistant"))
     574             :     {
     575           0 :         m_oSRS.SetGeogCS("unnamed ellipse", "unknown", "unnamed",
     576             :                          dfEquatorialRadius, dfInvFlattening, "Greenwich", 0.0,
     577             :                          "degree", 0.0174532925199433);
     578           0 :         m_oSRS.SetAE(dfProjRefLat, dfProjRefLon, 0.0, 0.0);
     579             : 
     580           0 :         adfGeoTransform[0] = -1 * (dfRadarLocX * dfScaleX);
     581           0 :         adfGeoTransform[1] = dfScaleX;
     582           0 :         adfGeoTransform[2] = 0.0;
     583           0 :         adfGeoTransform[3] = dfRadarLocY * dfScaleY;
     584           0 :         adfGeoTransform[4] = 0.0;
     585           0 :         adfGeoTransform[5] = -1 * dfScaleY;
     586             :         // When the projection is different from Mercator or Azimutal
     587             :         // equidistant, we set a standard geotransform.
     588             :     }
     589             :     else
     590             :     {
     591           0 :         adfGeoTransform[0] = -1 * (dfRadarLocX * dfScaleX);
     592           0 :         adfGeoTransform[1] = dfScaleX;
     593           0 :         adfGeoTransform[2] = 0.0;
     594           0 :         adfGeoTransform[3] = dfRadarLocY * dfScaleY;
     595           0 :         adfGeoTransform[4] = 0.0;
     596           0 :         adfGeoTransform[5] = -1 * dfScaleY;
     597             :     }
     598             : }
     599             : 
     600             : /******************************************************************************/
     601             : /* The geotransform in Mercator projection must be calculated transforming    */
     602             : /* distance to degrees over the ellipsoid, using Vincenty's formula.          */
     603             : /* The following method is ported from a version for Javascript by Chris      */
     604             : /* Veness distributed under a CC-BY 3.0 licence, whose conditions is that the */
     605             : /* following copyright notice is retained as well as the link to :            */
     606             : /* http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html         */
     607             : /******************************************************************************/
     608             : 
     609             : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     610             :  * - - - - - - - -  */
     611             : /* Vincenty Direct Solution of Geodesics on the Ellipsoid (c) Chris Veness
     612             :  * 2005-2012              */
     613             : /*                                                                                                */
     614             : /* from: Vincenty direct formula - T Vincenty, "Direct and Inverse Solutions of
     615             :  * Geodesics on the  */
     616             : /*       Ellipsoid with application of nested equations", Survey Review, vol
     617             :  * XXII no 176, 1975    */
     618             : /*       http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf */
     619             : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     620             :  * - - - - - - - -  */
     621             : 
     622           2 : bool IRISDataset::GeodesicCalculation(double fLat, double fLon, double fAngle,
     623             :                                       double fDist, double fEquatorialRadius,
     624             :                                       double fPolarRadius, double fFlattening,
     625             :                                       std::pair<double, double> &oOutPair)
     626             : {
     627           2 :     const double dfAlpha1 = DEG2RAD * fAngle;
     628           2 :     const double dfSinAlpha1 = sin(dfAlpha1);
     629           2 :     const double dfCosAlpha1 = cos(dfAlpha1);
     630             : 
     631           2 :     const double dfTanU1 = (1 - fFlattening) * tan(fLat * DEG2RAD);
     632           2 :     const double dfCosU1 = 1 / sqrt((1 + dfTanU1 * dfTanU1));
     633           2 :     const double dfSinU1 = dfTanU1 * dfCosU1;
     634             : 
     635           2 :     const double dfSigma1 = atan2(dfTanU1, dfCosAlpha1);
     636           2 :     const double dfSinAlpha = dfCosU1 * dfSinAlpha1;
     637           2 :     const double dfCosSqAlpha = 1 - dfSinAlpha * dfSinAlpha;
     638           2 :     const double dfUSq =
     639           2 :         dfCosSqAlpha *
     640           2 :         (fEquatorialRadius * fEquatorialRadius - fPolarRadius * fPolarRadius) /
     641           2 :         (fPolarRadius * fPolarRadius);
     642           2 :     const double dfA =
     643             :         1 +
     644           2 :         dfUSq / 16384 * (4096 + dfUSq * (-768 + dfUSq * (320 - 175 * dfUSq)));
     645           2 :     const double dfB =
     646           2 :         dfUSq / 1024 * (256 + dfUSq * (-128 + dfUSq * (74 - 47 * dfUSq)));
     647             : 
     648           2 :     double dfSigma = fDist / (fPolarRadius * dfA);
     649           2 :     double dfSigmaP = 2 * M_PI;
     650             : 
     651           2 :     double dfSinSigma = 0.0;
     652           2 :     double dfCosSigma = 0.0;
     653           2 :     double dfCos2SigmaM = 0.0;
     654             : 
     655           2 :     int nIter = 0;
     656           4 :     while (fabs(dfSigma - dfSigmaP) > 1e-12)
     657             :     {
     658           2 :         dfCos2SigmaM = cos(2 * dfSigma1 + dfSigma);
     659           2 :         dfSinSigma = sin(dfSigma);
     660           2 :         dfCosSigma = cos(dfSigma);
     661           2 :         const double dfDeltaSigma =
     662           2 :             dfB * dfSinSigma *
     663           2 :             (dfCos2SigmaM +
     664           2 :              dfB / 4 *
     665           2 :                  (dfCosSigma * (-1 + 2 * dfCos2SigmaM * dfCos2SigmaM) -
     666           2 :                   dfB / 6 * dfCos2SigmaM * (-3 + 4 * dfSinSigma * dfSinSigma) *
     667           2 :                       (-3 + 4 * dfCos2SigmaM * dfCos2SigmaM)));
     668           2 :         dfSigmaP = dfSigma;
     669           2 :         dfSigma = fDist / (fPolarRadius * dfA) + dfDeltaSigma;
     670           2 :         nIter++;
     671           2 :         if (nIter == 100)
     672           0 :             return false;
     673             :     }
     674             : 
     675           2 :     const double dfTmp =
     676           2 :         dfSinU1 * dfSinSigma - dfCosU1 * dfCosSigma * dfCosAlpha1;
     677           2 :     const double dfLat2 = atan2(
     678           2 :         dfSinU1 * dfCosSigma + dfCosU1 * dfSinSigma * dfCosAlpha1,
     679           2 :         (1 - fFlattening) * sqrt(dfSinAlpha * dfSinAlpha + dfTmp * dfTmp));
     680             :     const double dfLambda =
     681           2 :         atan2(dfSinSigma * dfSinAlpha1,
     682           2 :               dfCosU1 * dfCosSigma - dfSinU1 * dfSinSigma * dfCosAlpha1);
     683           2 :     const double dfC = fFlattening / 16 * dfCosSqAlpha *
     684           2 :                        (4 + fFlattening * (4 - 3 * dfCosSqAlpha));
     685           2 :     const double dfL =
     686             :         dfLambda -
     687           2 :         (1 - dfC) * fFlattening * dfSinAlpha *
     688           2 :             (dfSigma +
     689           2 :              dfC * dfSinSigma *
     690           2 :                  (dfCos2SigmaM +
     691           2 :                   dfC * dfCosSigma * (-1 + 2 * dfCos2SigmaM * dfCos2SigmaM)));
     692           2 :     double dfLon2 = fLon * DEG2RAD + dfL;
     693             : 
     694           2 :     if (dfLon2 > M_PI)
     695           0 :         dfLon2 = dfLon2 - 2 * M_PI;
     696           2 :     if (dfLon2 < -1 * M_PI)
     697           0 :         dfLon2 = dfLon2 + 2 * M_PI;
     698             : 
     699           2 :     oOutPair = std::pair<double, double>(dfLon2 * RAD2DEG, dfLat2 * RAD2DEG);
     700             : 
     701           2 :     return true;
     702             : }
     703             : 
     704             : /************************************************************************/
     705             : /*                          GetGeoTransform()                           */
     706             : /************************************************************************/
     707             : 
     708           1 : CPLErr IRISDataset::GetGeoTransform(double *padfTransform)
     709             : 
     710             : {
     711           1 :     if (!bHasLoadedProjection)
     712           0 :         LoadProjection();
     713           1 :     memcpy(padfTransform, adfGeoTransform, sizeof(double) * 6);
     714           1 :     return CE_None;
     715             : }
     716             : 
     717             : /************************************************************************/
     718             : /*                          GetSpatialRef()                             */
     719             : /************************************************************************/
     720             : 
     721           1 : const OGRSpatialReference *IRISDataset::GetSpatialRef() const
     722             : {
     723           1 :     if (!bHasLoadedProjection)
     724           1 :         LoadProjection();
     725           1 :     return m_oSRS.IsEmpty() ? nullptr : &m_oSRS;
     726             : }
     727             : 
     728             : /************************************************************************/
     729             : /*                              Identify()                              */
     730             : /************************************************************************/
     731             : 
     732       51205 : int IRISDataset::Identify(GDALOpenInfo *poOpenInfo)
     733             : 
     734             : {
     735             :     /* -------------------------------------------------------------------- */
     736             :     /*      Confirm that the file is an IRIS file                           */
     737             :     /* -------------------------------------------------------------------- */
     738       51205 :     if (poOpenInfo->nHeaderBytes < 640)
     739       49282 :         return FALSE;
     740             : 
     741        1923 :     const short nId1 = CPL_LSBSINT16PTR(poOpenInfo->pabyHeader);
     742        1923 :     const short nId2 = CPL_LSBSINT16PTR(poOpenInfo->pabyHeader + 12);
     743        1923 :     unsigned short nProductCode =
     744        1923 :         CPL_LSBUINT16PTR(poOpenInfo->pabyHeader + 12 + 12);
     745        1923 :     const short nYear = CPL_LSBSINT16PTR(poOpenInfo->pabyHeader + 26 + 12);
     746        1923 :     const short nMonth = CPL_LSBSINT16PTR(poOpenInfo->pabyHeader + 28 + 12);
     747        1923 :     const short nDay = CPL_LSBSINT16PTR(poOpenInfo->pabyHeader + 30 + 12);
     748             : 
     749             :     // Check if the two headers are 27 (product hdr) & 26 (product
     750             :     // configuration), and other metadata
     751        1929 :     if (!(nId1 == 27 && nId2 == 26 && nProductCode > 0 &&
     752           6 :           nProductCode < CPL_ARRAYSIZE(aszProductNames) && nYear >= 1900 &&
     753           6 :           nYear < 2100 && nMonth >= 1 && nMonth <= 12 && nDay >= 1 &&
     754             :           nDay <= 31))
     755        1917 :         return FALSE;
     756             : 
     757           6 :     return TRUE;
     758             : }
     759             : 
     760             : /************************************************************************/
     761             : /*                             FillString()                             */
     762             : /************************************************************************/
     763             : 
     764          21 : static void FillString(char *szBuffer, size_t nBufferSize, void *pSrcBuffer)
     765             : {
     766         285 :     for (size_t i = 0; i < nBufferSize - 1; i++)
     767         264 :         szBuffer[i] = static_cast<char *>(pSrcBuffer)[i];
     768          21 :     szBuffer[nBufferSize - 1] = '\0';
     769          21 : }
     770             : 
     771             : /************************************************************************/
     772             : /*                                Open()                                */
     773             : /************************************************************************/
     774             : 
     775           3 : GDALDataset *IRISDataset::Open(GDALOpenInfo *poOpenInfo)
     776             : 
     777             : {
     778           3 :     if (!Identify(poOpenInfo) || poOpenInfo->fpL == nullptr)
     779           0 :         return nullptr;
     780             :     /* -------------------------------------------------------------------- */
     781             :     /*      Confirm the requested access is supported.                      */
     782             :     /* -------------------------------------------------------------------- */
     783           3 :     if (poOpenInfo->eAccess == GA_Update)
     784             :     {
     785           0 :         CPLError(CE_Failure, CPLE_NotSupported,
     786             :                  "The IRIS driver does not support update access to existing"
     787             :                  " datasets.");
     788           0 :         return nullptr;
     789             :     }
     790             : 
     791             :     /* -------------------------------------------------------------------- */
     792             :     /*      Create a corresponding GDALDataset.                             */
     793             :     /* -------------------------------------------------------------------- */
     794           3 :     IRISDataset *poDS = new IRISDataset();
     795           3 :     poDS->fp = poOpenInfo->fpL;
     796           3 :     poOpenInfo->fpL = nullptr;
     797             : 
     798             :     /* -------------------------------------------------------------------- */
     799             :     /*      Read the header.                                                */
     800             :     /* -------------------------------------------------------------------- */
     801           3 :     VSIFReadL(poDS->abyHeader, 1, 640, poDS->fp);
     802           3 :     const int nXSize = CPL_LSBSINT32PTR(poDS->abyHeader + 100 + 12);
     803           3 :     const int nYSize = CPL_LSBSINT32PTR(poDS->abyHeader + 104 + 12);
     804           3 :     const int nNumBands = CPL_LSBSINT32PTR(poDS->abyHeader + 108 + 12);
     805             : 
     806           3 :     poDS->nRasterXSize = nXSize;
     807             : 
     808           3 :     poDS->nRasterYSize = nYSize;
     809           3 :     if (poDS->nRasterXSize <= 0 || poDS->nRasterYSize <= 0)
     810             :     {
     811           0 :         CPLError(CE_Failure, CPLE_AppDefined, "Invalid dimensions : %d x %d",
     812             :                  poDS->nRasterXSize, poDS->nRasterYSize);
     813           0 :         delete poDS;
     814           0 :         return nullptr;
     815             :     }
     816             : 
     817           3 :     if (!GDALCheckBandCount(nNumBands, TRUE))
     818             :     {
     819           0 :         delete poDS;
     820           0 :         return nullptr;
     821             :     }
     822             : 
     823             :     /* -------------------------------------------------------------------- */
     824             :     /*      Setting the Metadata                                            */
     825             :     /* -------------------------------------------------------------------- */
     826             :     // See point 3.2.26 at page 3.12 of the manual.
     827           3 :     poDS->nProductCode = CPL_LSBUINT16PTR(poDS->abyHeader + 12 + 12);
     828           3 :     poDS->SetMetadataItem("PRODUCT_ID",
     829           6 :                           CPLString().Printf("%d", poDS->nProductCode));
     830           3 :     if (poDS->nProductCode >= CPL_ARRAYSIZE(aszProductNames))
     831             :     {
     832           0 :         delete poDS;
     833           0 :         return nullptr;
     834             :     }
     835             : 
     836           3 :     poDS->SetMetadataItem("PRODUCT", aszProductNames[poDS->nProductCode]);
     837             : 
     838           3 :     poDS->nDataTypeCode = CPL_LSBUINT16PTR(poDS->abyHeader + 130 + 12);
     839           3 :     if (poDS->nDataTypeCode >= CPL_ARRAYSIZE(aszDataTypeCodes))
     840             :     {
     841           0 :         delete poDS;
     842           0 :         return nullptr;
     843             :     }
     844           3 :     poDS->SetMetadataItem("DATA_TYPE_CODE",
     845           3 :                           aszDataTypeCodes[poDS->nDataTypeCode]);
     846             : 
     847           3 :     if (poDS->nDataTypeCode >= CPL_ARRAYSIZE(aszDataTypes))
     848             :     {
     849           0 :         delete poDS;
     850           0 :         return nullptr;
     851             :     }
     852           3 :     poDS->SetMetadataItem("DATA_TYPE", aszDataTypes[poDS->nDataTypeCode]);
     853             : 
     854           3 :     const unsigned short nDataTypeInputCode =
     855           3 :         CPL_LSBUINT16PTR(poDS->abyHeader + 144 + 12);
     856           3 :     if (nDataTypeInputCode >= CPL_ARRAYSIZE(aszDataTypeCodes))
     857             :     {
     858           0 :         delete poDS;
     859           0 :         return nullptr;
     860             :     }
     861           3 :     poDS->SetMetadataItem("DATA_TYPE_INPUT_CODE",
     862           3 :                           aszDataTypeCodes[nDataTypeInputCode]);
     863             : 
     864           3 :     const unsigned short nDataTypeInput =
     865           3 :         CPL_LSBUINT16PTR(poDS->abyHeader + 144 + 12);
     866           3 :     if (nDataTypeInput >= CPL_ARRAYSIZE(aszDataTypes))
     867             :     {
     868           0 :         delete poDS;
     869           0 :         return nullptr;
     870             :     }
     871           3 :     poDS->SetMetadataItem("DATA_TYPE_INPUT", aszDataTypes[nDataTypeInput]);
     872             : 
     873           3 :     poDS->nProjectionCode =
     874           3 :         *static_cast<unsigned char *>(poDS->abyHeader + 146 + 12);
     875           3 :     if (poDS->nProjectionCode >= CPL_ARRAYSIZE(aszProjections))
     876             :     {
     877           0 :         delete poDS;
     878           0 :         return nullptr;
     879             :     }
     880             : 
     881             :     // Times.
     882             :     {
     883           3 :         const int nSeconds = CPL_LSBSINT32PTR(poDS->abyHeader + 20 + 12);
     884             : 
     885           3 :         const int nHour = (nSeconds - (nSeconds % 3600)) / 3600;
     886           3 :         const int nMinute =
     887           3 :             ((nSeconds - nHour * 3600) - (nSeconds - nHour * 3600) % 60) / 60;
     888           3 :         const int nSecond = nSeconds - nHour * 3600 - nMinute * 60;
     889             : 
     890           3 :         const short nYear = CPL_LSBSINT16PTR(poDS->abyHeader + 26 + 12);
     891           3 :         const short nMonth = CPL_LSBSINT16PTR(poDS->abyHeader + 28 + 12);
     892           3 :         const short nDay = CPL_LSBSINT16PTR(poDS->abyHeader + 30 + 12);
     893             : 
     894           3 :         poDS->SetMetadataItem("TIME_PRODUCT_GENERATED",
     895           3 :                               CPLString().Printf("%d-%02d-%02d %02d:%02d:%02d",
     896             :                                                  nYear, nMonth, nDay, nHour,
     897           3 :                                                  nMinute, nSecond));
     898             :     }
     899             : 
     900             :     {
     901           3 :         const int nSeconds = CPL_LSBSINT32PTR(poDS->abyHeader + 32 + 12);
     902             : 
     903           3 :         const int nHour = (nSeconds - (nSeconds % 3600)) / 3600;
     904           3 :         const int nMinute =
     905           3 :             ((nSeconds - nHour * 3600) - (nSeconds - nHour * 3600) % 60) / 60;
     906           3 :         const int nSecond = nSeconds - nHour * 3600 - nMinute * 60;
     907             : 
     908           3 :         const short nYear = CPL_LSBSINT16PTR(poDS->abyHeader + 26 + 12);
     909           3 :         const short nMonth = CPL_LSBSINT16PTR(poDS->abyHeader + 28 + 12);
     910           3 :         const short nDay = CPL_LSBSINT16PTR(poDS->abyHeader + 30 + 12);
     911             : 
     912           3 :         poDS->SetMetadataItem("TIME_INPUT_INGEST_SWEEP",
     913           3 :                               CPLString().Printf("%d-%02d-%02d %02d:%02d:%02d",
     914             :                                                  nYear, nMonth, nDay, nHour,
     915           3 :                                                  nMinute, nSecond));
     916             :     }
     917             : 
     918             :     // Site and task information.
     919             : 
     920           3 :     char szSiteName[17] = {};  // Must have one extra char for string end.
     921           3 :     char szVersionName[9] = {};
     922             : 
     923           3 :     FillString(szSiteName, sizeof(szSiteName), poDS->abyHeader + 320 + 12);
     924           3 :     FillString(szVersionName, sizeof(szVersionName),
     925           3 :                poDS->abyHeader + 16 + 320 + 12);
     926           3 :     poDS->SetMetadataItem("PRODUCT_SITE_NAME", szSiteName);
     927           3 :     poDS->SetMetadataItem("PRODUCT_SITE_IRIS_VERSION", szVersionName);
     928             : 
     929           3 :     FillString(szSiteName, sizeof(szSiteName), poDS->abyHeader + 90 + 320 + 12);
     930           3 :     FillString(szVersionName, sizeof(szVersionName),
     931           3 :                poDS->abyHeader + 24 + 320 + 12);
     932           3 :     poDS->SetMetadataItem("INGEST_SITE_NAME", szSiteName);
     933           3 :     poDS->SetMetadataItem("INGEST_SITE_IRIS_VERSION", szVersionName);
     934             : 
     935           3 :     FillString(szSiteName, sizeof(szSiteName), poDS->abyHeader + 74 + 320 + 12);
     936           3 :     poDS->SetMetadataItem("INGEST_HARDWARE_NAME", szSiteName);
     937             : 
     938           3 :     char szConfigFile[13] = {};
     939           3 :     FillString(szConfigFile, sizeof(szConfigFile), poDS->abyHeader + 62 + 12);
     940           3 :     poDS->SetMetadataItem("PRODUCT_CONFIGURATION_NAME", szConfigFile);
     941             : 
     942           3 :     char szTaskName[13] = {};
     943           3 :     FillString(szTaskName, sizeof(szTaskName), poDS->abyHeader + 74 + 12);
     944           3 :     poDS->SetMetadataItem("TASK_NAME", szTaskName);
     945             : 
     946           3 :     const short nRadarHeight =
     947           3 :         CPL_LSBSINT16PTR(poDS->abyHeader + 284 + 320 + 12);
     948           3 :     poDS->SetMetadataItem("RADAR_HEIGHT",
     949           6 :                           CPLString().Printf("%d m", nRadarHeight));
     950             :     // Ground height over the sea level.
     951           3 :     const short nGroundHeight =
     952           3 :         CPL_LSBSINT16PTR(poDS->abyHeader + 118 + 320 + 12);
     953           3 :     poDS->SetMetadataItem(
     954             :         "GROUND_HEIGHT",
     955           6 :         CPLString().Printf("%d m", nRadarHeight - nGroundHeight));
     956             : 
     957           3 :     unsigned short nFlags = CPL_LSBUINT16PTR(poDS->abyHeader + 86 + 12);
     958             :     // Get eleventh bit.
     959           3 :     nFlags = nFlags << 4;
     960           3 :     nFlags = nFlags >> 15;
     961           3 :     if (nFlags == 1)
     962             :     {
     963           1 :         poDS->SetMetadataItem("COMPOSITED_PRODUCT", "YES");
     964           1 :         const unsigned int compositedMask =
     965           1 :             CPL_LSBUINT32PTR(poDS->abyHeader + 232 + 320 + 12);
     966           1 :         poDS->SetMetadataItem("COMPOSITED_PRODUCT_MASK",
     967           2 :                               CPLString().Printf("0x%08x", compositedMask));
     968             :     }
     969             :     else
     970             :     {
     971           2 :         poDS->SetMetadataItem("COMPOSITED_PRODUCT", "NO");
     972             :     }
     973             : 
     974             :     // Wave values.
     975           3 :     poDS->SetMetadataItem(
     976           3 :         "PRF", CPLString().Printf("%d Hz", CPL_LSBSINT32PTR(poDS->abyHeader +
     977           3 :                                                             120 + 320 + 12)));
     978           3 :     poDS->SetMetadataItem(
     979             :         "WAVELENGTH",
     980           3 :         CPLString().Printf("%4.2f cm",
     981           3 :                            CPL_LSBSINT32PTR(poDS->abyHeader + 148 + 320 + 12) /
     982           3 :                                100.0f));
     983           3 :     const unsigned short nPolarizationType =
     984           3 :         CPL_LSBUINT16PTR(poDS->abyHeader + 172 + 320 + 12);
     985             : 
     986             :     // See section 3.3.37 & 3.2.54.
     987           3 :     float fNyquist = (CPL_LSBSINT32PTR(poDS->abyHeader + 120 + 320 + 12)) *
     988           3 :                      (static_cast<float>(
     989           3 :                           CPL_LSBSINT32PTR(poDS->abyHeader + 148 + 320 + 12)) /
     990             :                       10000.0f) /
     991             :                      4.0f;
     992           3 :     if (nPolarizationType == 1)
     993           0 :         fNyquist = fNyquist * 2.0f;
     994           3 :     else if (nPolarizationType == 2)
     995           0 :         fNyquist = fNyquist * 3.0f;
     996           3 :     else if (nPolarizationType == 3)
     997           0 :         fNyquist = fNyquist * 4.0f;
     998           3 :     poDS->fNyquistVelocity = fNyquist;
     999           3 :     poDS->SetMetadataItem("NYQUIST_VELOCITY",
    1000           6 :                           CPLString().Printf("%.2f m/s", fNyquist));
    1001             : 
    1002             :     // Product dependent metadata (stored in 80 bytes from 162 bytes
    1003             :     // at the product header) See point 3.2.30 at page 3.19 of the
    1004             :     // manual.
    1005             :     // See point 3.2.25 at page 3.12 of the manual.
    1006           3 :     if (EQUAL(aszProductNames[poDS->nProductCode], "PPI"))
    1007             :     {
    1008             :         // Degrees = 360 * (Binary Angle)*2^N
    1009           2 :         const float fElevation =
    1010           2 :             CPL_LSBSINT16PTR(poDS->abyHeader + 164 + 12) * 360.0f / 65536.0f;
    1011             : 
    1012           2 :         poDS->SetMetadataItem("PPI_ELEVATION_ANGLE",
    1013           4 :                               CPLString().Printf("%f", fElevation));
    1014           2 :         if (EQUAL(aszDataTypeCodes[poDS->nDataTypeCode], "dBZ"))
    1015           2 :             poDS->SetMetadataItem("DATA_TYPE_UNITS", "dBZ");
    1016             :         else
    1017           0 :             poDS->SetMetadataItem("DATA_TYPE_UNITS", "m/s");
    1018             :         // See point 3.2.2 at page 3.2 of the manual.
    1019             :     }
    1020           1 :     else if (EQUAL(aszProductNames[poDS->nProductCode], "CAPPI"))
    1021             :     {
    1022           1 :         const float fElevation =
    1023           1 :             CPL_LSBSINT32PTR(poDS->abyHeader + 4 + 164 + 12) / 100.0f;
    1024           1 :         poDS->SetMetadataItem("CAPPI_BOTTOM_HEIGHT",
    1025           2 :                               CPLString().Printf("%.1f m", fElevation));
    1026           1 :         const float fAzimuthSmoothingForShear =
    1027           1 :             CPL_LSBUINT16PTR(poDS->abyHeader + 10 + 164 + 12) * 360.0f /
    1028             :             65536.0f;
    1029           1 :         poDS->SetMetadataItem(
    1030             :             "AZIMUTH_SMOOTHING_FOR_SHEAR",
    1031           2 :             CPLString().Printf("%.1f", fAzimuthSmoothingForShear));
    1032           1 :         const unsigned int nMaxAgeVVPCorrection =
    1033           1 :             CPL_LSBUINT32PTR(poDS->abyHeader + 24 + 164 + 12);
    1034           1 :         poDS->SetMetadataItem("MAX_AGE_FOR_SHEAR_VVP_CORRECTION",
    1035           2 :                               CPLString().Printf("%d s", nMaxAgeVVPCorrection));
    1036           1 :         if (EQUAL(aszDataTypeCodes[poDS->nDataTypeCode], "dBZ"))
    1037           1 :             poDS->SetMetadataItem("DATA_TYPE_UNITS", "dBZ");
    1038             :         else
    1039           0 :             poDS->SetMetadataItem("DATA_TYPE_UNITS", "m/s");
    1040             :         // See point 3.2.32 at page 3.19 of the manual.
    1041             :     }
    1042           0 :     else if (EQUAL(aszProductNames[poDS->nProductCode], "RAIN1") ||
    1043           0 :              EQUAL(aszProductNames[poDS->nProductCode], "RAINN"))
    1044             :     {
    1045           0 :         const short nNumProducts =
    1046           0 :             CPL_LSBSINT16PTR(poDS->abyHeader + 170 + 320 + 12);
    1047           0 :         poDS->SetMetadataItem("NUM_FILES_USED",
    1048           0 :                               CPLString().Printf("%d", nNumProducts));
    1049             : 
    1050           0 :         const float fMinZAcum =
    1051           0 :             (CPL_LSBUINT32PTR(poDS->abyHeader + 164 + 12) - 32768.0f) /
    1052             :             10000.0f;
    1053           0 :         poDS->SetMetadataItem("MINIMUM_Z_TO_ACCUMULATE",
    1054           0 :                               CPLString().Printf("%f", fMinZAcum));
    1055             : 
    1056           0 :         const unsigned short nSecondsOfAccumulation =
    1057           0 :             CPL_LSBUINT16PTR(poDS->abyHeader + 6 + 164 + 12);
    1058           0 :         poDS->SetMetadataItem(
    1059             :             "SECONDS_OF_ACCUMULATION",
    1060           0 :             CPLString().Printf("%d s", nSecondsOfAccumulation));
    1061             : 
    1062           0 :         const unsigned int nSpanInputFiles =
    1063           0 :             CPL_LSBUINT32PTR(poDS->abyHeader + 24 + 164 + 12);
    1064           0 :         poDS->SetMetadataItem("SPAN_OF_INPUT_FILES",
    1065           0 :                               CPLString().Printf("%d s", nSpanInputFiles));
    1066           0 :         poDS->SetMetadataItem("DATA_TYPE_UNITS", "mm");
    1067             : 
    1068           0 :         char szInputProductName[13] = "";
    1069           0 :         for (int k = 0; k < 12; k++)
    1070           0 :             szInputProductName[k] =
    1071           0 :                 *reinterpret_cast<char *>(poDS->abyHeader + k + 12 + 164 + 12);
    1072             : 
    1073           0 :         poDS->SetMetadataItem("INPUT_PRODUCT_NAME",
    1074           0 :                               CPLString().Printf("%s", szInputProductName));
    1075             : 
    1076           0 :         if (EQUAL(aszProductNames[poDS->nProductCode], "RAINN"))
    1077           0 :             poDS->SetMetadataItem(
    1078             :                 "NUM_HOURS_ACCUMULATE",
    1079           0 :                 CPLString().Printf(
    1080           0 :                     "%d", CPL_LSBUINT16PTR(poDS->abyHeader + 10 + 164 + 12)));
    1081             : 
    1082             :         // See point 3.2.73 at page 3.36 of the manual.
    1083             :     }
    1084           0 :     else if (EQUAL(aszProductNames[poDS->nProductCode], "VIL"))
    1085             :     {
    1086           0 :         const float fBottomHeightInterval =
    1087           0 :             CPL_LSBSINT32PTR(poDS->abyHeader + 4 + 164 + 12) / 100.0f;
    1088             :         // TYPO in metadata key: FIXME ?
    1089           0 :         poDS->SetMetadataItem(
    1090             :             "BOTTOM_OF_HEIGTH_INTERVAL",
    1091           0 :             CPLString().Printf("%.1f m", fBottomHeightInterval));
    1092           0 :         const float fTopHeightInterval =
    1093           0 :             CPL_LSBSINT32PTR(poDS->abyHeader + 8 + 164 + 12) / 100.0f;
    1094             :         // TYPO in metadata key: FIXME ?
    1095           0 :         poDS->SetMetadataItem("TOP_OF_HEIGTH_INTERVAL",
    1096           0 :                               CPLString().Printf("%.1f m", fTopHeightInterval));
    1097           0 :         poDS->SetMetadataItem("VIL_DENSITY_NOT_AVAILABLE_VALUE", "-1");
    1098           0 :         poDS->SetMetadataItem("DATA_TYPE_UNITS", "mm");
    1099             :         // See point 3.2.68 at page 3.36 of the manual
    1100             :     }
    1101           0 :     else if (EQUAL(aszProductNames[poDS->nProductCode], "TOPS"))
    1102             :     {
    1103           0 :         const float fZThreshold =
    1104           0 :             CPL_LSBSINT16PTR(poDS->abyHeader + 4 + 164 + 12) / 16.0f;
    1105           0 :         poDS->SetMetadataItem("Z_THRESHOLD",
    1106           0 :                               CPLString().Printf("%.1f dBZ", fZThreshold));
    1107           0 :         poDS->SetMetadataItem("ECHO_TOPS_NOT_AVAILABLE_VALUE", "-1");
    1108           0 :         poDS->SetMetadataItem("DATA_TYPE_UNITS", "km");
    1109             :         // See point 3.2.20 at page 3.10 of the manual.
    1110             :     }
    1111           0 :     else if (EQUAL(aszProductNames[poDS->nProductCode], "MAX"))
    1112             :     {
    1113           0 :         const float fBottomInterval =
    1114           0 :             CPL_LSBSINT32PTR(poDS->abyHeader + 4 + 164 + 12) / 100.0f;
    1115           0 :         poDS->SetMetadataItem("BOTTOM_OF_INTERVAL",
    1116           0 :                               CPLString().Printf("%.1f m", fBottomInterval));
    1117           0 :         const float fTopInterval =
    1118           0 :             CPL_LSBSINT32PTR(poDS->abyHeader + 8 + 164 + 12) / 100.0f;
    1119           0 :         poDS->SetMetadataItem("TOP_OF_INTERVAL",
    1120           0 :                               CPLString().Printf("%.1f m", fTopInterval));
    1121           0 :         const int nNumPixelsSidePanels =
    1122           0 :             CPL_LSBSINT32PTR(poDS->abyHeader + 12 + 164 + 12);
    1123           0 :         poDS->SetMetadataItem("NUM_PIXELS_SIDE_PANELS",
    1124           0 :                               CPLString().Printf("%d", nNumPixelsSidePanels));
    1125           0 :         const short nHorizontalSmootherSidePanels =
    1126           0 :             CPL_LSBSINT16PTR(poDS->abyHeader + 16 + 164 + 12);
    1127           0 :         poDS->SetMetadataItem(
    1128             :             "HORIZONTAL_SMOOTHER_SIDE_PANELS",
    1129           0 :             CPLString().Printf("%d", nHorizontalSmootherSidePanels));
    1130           0 :         const short nVerticalSmootherSidePanels =
    1131           0 :             CPL_LSBSINT16PTR(poDS->abyHeader + 18 + 164 + 12);
    1132           0 :         poDS->SetMetadataItem(
    1133             :             "VERTICAL_SMOOTHER_SIDE_PANELS",
    1134           0 :             CPLString().Printf("%d", nVerticalSmootherSidePanels));
    1135             :     }
    1136             : 
    1137             :     /* -------------------------------------------------------------------- */
    1138             :     /*      Create band information objects.                                */
    1139             :     /* -------------------------------------------------------------------- */
    1140             :     // coverity[tainted_data]
    1141           6 :     for (int iBandNum = 1; iBandNum <= nNumBands; iBandNum++)
    1142             :     {
    1143           3 :         poDS->SetBand(iBandNum, new IRISRasterBand(poDS, iBandNum));
    1144             : 
    1145           3 :         poDS->GetRasterBand(iBandNum)->SetNoDataValue(-9999);
    1146             :         // Calculating the band height to include it in the band metadata.  Only
    1147             :         // for the CAPPI product.
    1148           3 :         if (EQUAL(aszProductNames[poDS->nProductCode], "CAPPI"))
    1149             :         {
    1150           1 :             const float fScaleZ =
    1151           1 :                 CPL_LSBSINT32PTR(poDS->abyHeader + 96 + 12) / 100.0f;
    1152           1 :             const float fOffset =
    1153           1 :                 CPL_LSBSINT32PTR(poDS->abyHeader + 4 + 164 + 12) / 100.0f;
    1154             : 
    1155           2 :             poDS->GetRasterBand(iBandNum)->SetMetadataItem(
    1156           1 :                 "height", CPLString().Printf(
    1157           1 :                               "%.0f m", fOffset + fScaleZ * (iBandNum - 1)));
    1158             :         }
    1159             :     }
    1160             :     /* -------------------------------------------------------------------- */
    1161             :     /*      Initialize any PAM information.                                 */
    1162             :     /* -------------------------------------------------------------------- */
    1163           3 :     poDS->SetDescription(poOpenInfo->pszFilename);
    1164           3 :     poDS->TryLoadXML();
    1165             : 
    1166             :     /* -------------------------------------------------------------------- */
    1167             :     /*      Check for overviews.                                            */
    1168             :     /* -------------------------------------------------------------------- */
    1169           3 :     poDS->oOvManager.Initialize(poDS, poOpenInfo->pszFilename);
    1170             : 
    1171           3 :     return poDS;
    1172             : }
    1173             : 
    1174             : /************************************************************************/
    1175             : /*                          GDALRegister_IRIS()                         */
    1176             : /************************************************************************/
    1177             : 
    1178        1682 : void GDALRegister_IRIS()
    1179             : 
    1180             : {
    1181        1682 :     if (GDALGetDriverByName("IRIS") != nullptr)
    1182         301 :         return;
    1183             : 
    1184        1381 :     GDALDriver *poDriver = new GDALDriver();
    1185             : 
    1186        1381 :     poDriver->SetDescription("IRIS");
    1187        1381 :     poDriver->SetMetadataItem(GDAL_DCAP_RASTER, "YES");
    1188        1381 :     poDriver->SetMetadataItem(GDAL_DMD_LONGNAME,
    1189        1381 :                               "IRIS data (.PPI, .CAPPi etc)");
    1190        1381 :     poDriver->SetMetadataItem(GDAL_DMD_HELPTOPIC, "drivers/raster/iris.html");
    1191        1381 :     poDriver->SetMetadataItem(GDAL_DMD_EXTENSION, "ppi");
    1192        1381 :     poDriver->SetMetadataItem(GDAL_DCAP_VIRTUALIO, "YES");
    1193             : 
    1194        1381 :     poDriver->pfnOpen = IRISDataset::Open;
    1195        1381 :     poDriver->pfnIdentify = IRISDataset::Identify;
    1196             : 
    1197        1381 :     GetGDALDriverManager()->RegisterDriver(poDriver);
    1198             : }

Generated by: LCOV version 1.14