Line data Source code
1 : /******************************************************************************
2 : *
3 : * Project: Virtual GDAL Datasets
4 : * Purpose: Implementation of a sourced raster band that derives its raster
5 : * by applying an algorithm (GDALDerivedPixelFunc) to the sources.
6 : * Author: Pete Nagy
7 : *
8 : ******************************************************************************
9 : * Copyright (c) 2005 Vexcel Corp.
10 : * Copyright (c) 2008-2011, Even Rouault <even dot rouault at spatialys.com>
11 : *
12 : * SPDX-License-Identifier: MIT
13 : *****************************************************************************/
14 :
15 : #include "cpl_minixml.h"
16 : #include "cpl_string.h"
17 : #include "vrtdataset.h"
18 : #include "cpl_multiproc.h"
19 : #include "gdalpython.h"
20 :
21 : #include <algorithm>
22 : #include <array>
23 : #include <map>
24 : #include <vector>
25 : #include <utility>
26 :
27 : /*! @cond Doxygen_Suppress */
28 :
29 : using namespace GDALPy;
30 :
31 : // #define GDAL_VRT_DISABLE_PYTHON
32 :
33 : #ifndef GDAL_VRT_ENABLE_PYTHON_DEFAULT
34 : // Can be YES, NO or TRUSTED_MODULES
35 : #define GDAL_VRT_ENABLE_PYTHON_DEFAULT "TRUSTED_MODULES"
36 : #endif
37 :
38 : /* Flags for getting buffers */
39 : #define PyBUF_WRITABLE 0x0001
40 : #define PyBUF_FORMAT 0x0004
41 : #define PyBUF_ND 0x0008
42 : #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
43 : #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
44 : #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
45 :
46 : /************************************************************************/
47 : /* GDALCreateNumpyArray() */
48 : /************************************************************************/
49 :
50 399 : static PyObject *GDALCreateNumpyArray(PyObject *pCreateArray, void *pBuffer,
51 : GDALDataType eType, int nHeight,
52 : int nWidth)
53 : {
54 : PyObject *poPyBuffer;
55 : const size_t nSize =
56 399 : static_cast<size_t>(nHeight) * nWidth * GDALGetDataTypeSizeBytes(eType);
57 : Py_buffer pybuffer;
58 399 : if (PyBuffer_FillInfo(&pybuffer, nullptr, static_cast<char *>(pBuffer),
59 399 : nSize, 0, PyBUF_FULL) != 0)
60 : {
61 0 : return nullptr;
62 : }
63 399 : poPyBuffer = PyMemoryView_FromBuffer(&pybuffer);
64 399 : PyObject *pArgsCreateArray = PyTuple_New(4);
65 399 : PyTuple_SetItem(pArgsCreateArray, 0, poPyBuffer);
66 399 : const char *pszDataType = nullptr;
67 399 : switch (eType)
68 : {
69 357 : case GDT_Byte:
70 357 : pszDataType = "uint8";
71 357 : break;
72 15 : case GDT_Int8:
73 15 : pszDataType = "int8";
74 15 : break;
75 2 : case GDT_UInt16:
76 2 : pszDataType = "uint16";
77 2 : break;
78 7 : case GDT_Int16:
79 7 : pszDataType = "int16";
80 7 : break;
81 2 : case GDT_UInt32:
82 2 : pszDataType = "uint32";
83 2 : break;
84 2 : case GDT_Int32:
85 2 : pszDataType = "int32";
86 2 : break;
87 2 : case GDT_Int64:
88 2 : pszDataType = "int64";
89 2 : break;
90 2 : case GDT_UInt64:
91 2 : pszDataType = "uint64";
92 2 : break;
93 2 : case GDT_Float16:
94 2 : pszDataType = "float16";
95 2 : break;
96 2 : case GDT_Float32:
97 2 : pszDataType = "float32";
98 2 : break;
99 2 : case GDT_Float64:
100 2 : pszDataType = "float64";
101 2 : break;
102 0 : case GDT_CInt16:
103 : case GDT_CInt32:
104 0 : CPLAssert(FALSE);
105 : break;
106 0 : case GDT_CFloat16:
107 0 : CPLAssert(FALSE);
108 : break;
109 2 : case GDT_CFloat32:
110 2 : pszDataType = "complex64";
111 2 : break;
112 2 : case GDT_CFloat64:
113 2 : pszDataType = "complex128";
114 2 : break;
115 0 : case GDT_Unknown:
116 : case GDT_TypeCount:
117 0 : CPLAssert(FALSE);
118 : break;
119 : }
120 399 : PyTuple_SetItem(
121 : pArgsCreateArray, 1,
122 : PyBytes_FromStringAndSize(pszDataType, strlen(pszDataType)));
123 399 : PyTuple_SetItem(pArgsCreateArray, 2, PyLong_FromLong(nHeight));
124 399 : PyTuple_SetItem(pArgsCreateArray, 3, PyLong_FromLong(nWidth));
125 : PyObject *poNumpyArray =
126 399 : PyObject_Call(pCreateArray, pArgsCreateArray, nullptr);
127 399 : Py_DecRef(pArgsCreateArray);
128 399 : if (PyErr_Occurred())
129 0 : PyErr_Print();
130 399 : return poNumpyArray;
131 : }
132 :
133 : /************************************************************************/
134 : /* ==================================================================== */
135 : /* VRTDerivedRasterBandPrivateData */
136 : /* ==================================================================== */
137 : /************************************************************************/
138 :
139 : class VRTDerivedRasterBandPrivateData
140 : {
141 : VRTDerivedRasterBandPrivateData(const VRTDerivedRasterBandPrivateData &) =
142 : delete;
143 : VRTDerivedRasterBandPrivateData &
144 : operator=(const VRTDerivedRasterBandPrivateData &) = delete;
145 :
146 : public:
147 : CPLString m_osCode{};
148 : CPLString m_osLanguage = "C";
149 : int m_nBufferRadius = 0;
150 : PyObject *m_poGDALCreateNumpyArray = nullptr;
151 : PyObject *m_poUserFunction = nullptr;
152 : bool m_bPythonInitializationDone = false;
153 : bool m_bPythonInitializationSuccess = false;
154 : bool m_bExclusiveLock = false;
155 : bool m_bFirstTime = true;
156 : std::vector<std::pair<CPLString, CPLString>> m_oFunctionArgs{};
157 : bool m_bSkipNonContributingSourcesSpecified = false;
158 : bool m_bSkipNonContributingSources = false;
159 : GIntBig m_nAllowedRAMUsage = 0;
160 :
161 1986 : VRTDerivedRasterBandPrivateData()
162 1986 : : m_nAllowedRAMUsage(CPLGetUsablePhysicalRAM() / 10 * 4)
163 : {
164 : // Use only up to 40% of RAM to acquire source bands and generate the
165 : // output buffer.
166 : // Only for tests now
167 1986 : const char *pszMAX_RAM = "VRT_DERIVED_DATASET_ALLOWED_RAM_USAGE";
168 1986 : if (const char *pszVal = CPLGetConfigOption(pszMAX_RAM, nullptr))
169 : {
170 1 : CPL_IGNORE_RET_VAL(
171 1 : CPLParseMemorySize(pszVal, &m_nAllowedRAMUsage, nullptr));
172 : }
173 1986 : }
174 :
175 : ~VRTDerivedRasterBandPrivateData();
176 : };
177 :
178 1986 : VRTDerivedRasterBandPrivateData::~VRTDerivedRasterBandPrivateData()
179 : {
180 1986 : if (m_poGDALCreateNumpyArray)
181 48 : Py_DecRef(m_poGDALCreateNumpyArray);
182 1986 : if (m_poUserFunction)
183 49 : Py_DecRef(m_poUserFunction);
184 1986 : }
185 :
186 : /************************************************************************/
187 : /* ==================================================================== */
188 : /* VRTDerivedRasterBand */
189 : /* ==================================================================== */
190 : /************************************************************************/
191 :
192 : /************************************************************************/
193 : /* VRTDerivedRasterBand() */
194 : /************************************************************************/
195 :
196 1454 : VRTDerivedRasterBand::VRTDerivedRasterBand(GDALDataset *poDSIn, int nBandIn)
197 : : VRTSourcedRasterBand(poDSIn, nBandIn), m_poPrivate(nullptr),
198 1454 : eSourceTransferType(GDT_Unknown)
199 : {
200 1454 : m_poPrivate = new VRTDerivedRasterBandPrivateData;
201 1454 : }
202 :
203 : /************************************************************************/
204 : /* VRTDerivedRasterBand() */
205 : /************************************************************************/
206 :
207 532 : VRTDerivedRasterBand::VRTDerivedRasterBand(GDALDataset *poDSIn, int nBandIn,
208 : GDALDataType eType, int nXSize,
209 : int nYSize, int nBlockXSizeIn,
210 532 : int nBlockYSizeIn)
211 : : VRTSourcedRasterBand(poDSIn, nBandIn, eType, nXSize, nYSize,
212 : nBlockXSizeIn, nBlockYSizeIn),
213 532 : m_poPrivate(nullptr), eSourceTransferType(GDT_Unknown)
214 : {
215 532 : m_poPrivate = new VRTDerivedRasterBandPrivateData;
216 532 : }
217 :
218 : /************************************************************************/
219 : /* ~VRTDerivedRasterBand() */
220 : /************************************************************************/
221 :
222 3972 : VRTDerivedRasterBand::~VRTDerivedRasterBand()
223 :
224 : {
225 1986 : delete m_poPrivate;
226 3972 : }
227 :
228 : /************************************************************************/
229 : /* Cleanup() */
230 : /************************************************************************/
231 :
232 1121 : void VRTDerivedRasterBand::Cleanup()
233 : {
234 1121 : }
235 :
236 : /************************************************************************/
237 : /* GetGlobalMapPixelFunction() */
238 : /************************************************************************/
239 :
240 : static std::map<std::string,
241 : std::pair<VRTDerivedRasterBand::PixelFunc, std::string>> &
242 56588 : GetGlobalMapPixelFunction()
243 : {
244 : static std::map<std::string,
245 : std::pair<VRTDerivedRasterBand::PixelFunc, std::string>>
246 56588 : gosMapPixelFunction;
247 56588 : return gosMapPixelFunction;
248 : }
249 :
250 : /************************************************************************/
251 : /* AddPixelFunction() */
252 : /************************************************************************/
253 :
254 : /*! @endcond */
255 :
256 : /**
257 : * This adds a pixel function to the global list of available pixel
258 : * functions for derived bands. Pixel functions must be registered
259 : * in this way before a derived band tries to access data.
260 : *
261 : * Derived bands are stored with only the name of the pixel function
262 : * that it will apply, and if a pixel function matching the name is not
263 : * found the IRasterIO() call will do nothing.
264 : *
265 : * @param pszName Name used to access pixel function
266 : * @param pfnNewFunction Pixel function associated with name. An
267 : * existing pixel function registered with the same name will be
268 : * replaced with the new one.
269 : *
270 : * @return CE_None, invalid (NULL) parameters are currently ignored.
271 : */
272 14532 : CPLErr CPL_STDCALL GDALAddDerivedBandPixelFunc(
273 : const char *pszName, GDALDerivedPixelFunc pfnNewFunction)
274 : {
275 14532 : if (pszName == nullptr || pszName[0] == '\0' || pfnNewFunction == nullptr)
276 : {
277 0 : return CE_None;
278 : }
279 :
280 29064 : GetGlobalMapPixelFunction()[pszName] = {
281 47 : [pfnNewFunction](void **papoSources, int nSources, void *pData,
282 : int nBufXSize, int nBufYSize, GDALDataType eSrcType,
283 : GDALDataType eBufType, int nPixelSpace, int nLineSpace,
284 47 : CSLConstList papszFunctionArgs)
285 : {
286 : (void)papszFunctionArgs;
287 47 : return pfnNewFunction(papoSources, nSources, pData, nBufXSize,
288 : nBufYSize, eSrcType, eBufType, nPixelSpace,
289 47 : nLineSpace);
290 : },
291 43596 : ""};
292 :
293 14532 : return CE_None;
294 : }
295 :
296 : /**
297 : * This adds a pixel function to the global list of available pixel
298 : * functions for derived bands. Pixel functions must be registered
299 : * in this way before a derived band tries to access data.
300 : *
301 : * Derived bands are stored with only the name of the pixel function
302 : * that it will apply, and if a pixel function matching the name is not
303 : * found the IRasterIO() call will do nothing.
304 : *
305 : * @param pszName Name used to access pixel function
306 : * @param pfnNewFunction Pixel function associated with name. An
307 : * existing pixel function registered with the same name will be
308 : * replaced with the new one.
309 : * @param pszMetadata Pixel function metadata (not currently implemented)
310 : *
311 : * @return CE_None, invalid (NULL) parameters are currently ignored.
312 : * @since GDAL 3.4
313 : */
314 39233 : CPLErr CPL_STDCALL GDALAddDerivedBandPixelFuncWithArgs(
315 : const char *pszName, GDALDerivedPixelFuncWithArgs pfnNewFunction,
316 : const char *pszMetadata)
317 : {
318 39233 : if (!pszName || pszName[0] == '\0' || !pfnNewFunction)
319 : {
320 0 : return CE_None;
321 : }
322 :
323 78466 : GetGlobalMapPixelFunction()[pszName] = {pfnNewFunction,
324 117699 : pszMetadata ? pszMetadata : ""};
325 :
326 39233 : return CE_None;
327 : }
328 :
329 : /*! @cond Doxygen_Suppress */
330 :
331 : /**
332 : * This adds a pixel function to the global list of available pixel
333 : * functions for derived bands.
334 : *
335 : * This is the same as the C function GDALAddDerivedBandPixelFunc()
336 : *
337 : * @param pszFuncNameIn Name used to access pixel function
338 : * @param pfnNewFunction Pixel function associated with name. An
339 : * existing pixel function registered with the same name will be
340 : * replaced with the new one.
341 : *
342 : * @return CE_None, invalid (NULL) parameters are currently ignored.
343 : */
344 : CPLErr
345 0 : VRTDerivedRasterBand::AddPixelFunction(const char *pszFuncNameIn,
346 : GDALDerivedPixelFunc pfnNewFunction)
347 : {
348 0 : return GDALAddDerivedBandPixelFunc(pszFuncNameIn, pfnNewFunction);
349 : }
350 :
351 0 : CPLErr VRTDerivedRasterBand::AddPixelFunction(
352 : const char *pszFuncNameIn, GDALDerivedPixelFuncWithArgs pfnNewFunction,
353 : const char *pszMetadata)
354 : {
355 0 : return GDALAddDerivedBandPixelFuncWithArgs(pszFuncNameIn, pfnNewFunction,
356 0 : pszMetadata);
357 : }
358 :
359 : /************************************************************************/
360 : /* GetPixelFunction() */
361 : /************************************************************************/
362 :
363 : /**
364 : * Get a pixel function previously registered using the global
365 : * AddPixelFunction.
366 : *
367 : * @param pszFuncNameIn The name associated with the pixel function.
368 : *
369 : * @return A pointer to a std::pair whose first element is the pixel
370 : * function pointer and second element is the pixel function
371 : * metadata string. If no pixel function has been registered
372 : * for pszFuncNameIn, nullptr will be returned.
373 : */
374 : /* static */
375 : const std::pair<VRTDerivedRasterBand::PixelFunc, std::string> *
376 2759 : VRTDerivedRasterBand::GetPixelFunction(const char *pszFuncNameIn)
377 : {
378 2759 : if (pszFuncNameIn == nullptr || pszFuncNameIn[0] == '\0')
379 : {
380 0 : return nullptr;
381 : }
382 :
383 2759 : const auto &oMapPixelFunction = GetGlobalMapPixelFunction();
384 2759 : const auto oIter = oMapPixelFunction.find(pszFuncNameIn);
385 :
386 2759 : if (oIter == oMapPixelFunction.end())
387 3 : return nullptr;
388 :
389 2756 : return &(oIter->second);
390 : }
391 :
392 : /************************************************************************/
393 : /* GetPixelFunctionNames() */
394 : /************************************************************************/
395 :
396 : /**
397 : * Return the list of available pixel function names.
398 : */
399 : /* static */
400 64 : std::vector<std::string> VRTDerivedRasterBand::GetPixelFunctionNames()
401 : {
402 64 : std::vector<std::string> res;
403 2432 : for (const auto &iter : GetGlobalMapPixelFunction())
404 : {
405 2368 : res.push_back(iter.first);
406 : }
407 64 : return res;
408 : }
409 :
410 : /************************************************************************/
411 : /* SetPixelFunctionName() */
412 : /************************************************************************/
413 :
414 : /**
415 : * Set the pixel function name to be applied to this derived band. The
416 : * name should match a pixel function registered using AddPixelFunction.
417 : *
418 : * @param pszFuncNameIn Name of pixel function to be applied to this derived
419 : * band.
420 : */
421 1987 : void VRTDerivedRasterBand::SetPixelFunctionName(const char *pszFuncNameIn)
422 : {
423 1987 : osFuncName = (pszFuncNameIn == nullptr) ? "" : pszFuncNameIn;
424 1987 : }
425 :
426 : /************************************************************************/
427 : /* AddPixelFunctionArgument() */
428 : /************************************************************************/
429 :
430 : /**
431 : * Set a pixel function argument to a specified value.
432 : * @param pszArg the argument name
433 : * @param pszValue the argument value
434 : *
435 : * @since 3.12
436 : */
437 2280 : void VRTDerivedRasterBand::AddPixelFunctionArgument(const char *pszArg,
438 : const char *pszValue)
439 : {
440 2280 : m_poPrivate->m_oFunctionArgs.emplace_back(pszArg, pszValue);
441 2280 : }
442 :
443 : /************************************************************************/
444 : /* SetPixelFunctionLanguage() */
445 : /************************************************************************/
446 :
447 : /**
448 : * Set the language of the pixel function.
449 : *
450 : * @param pszLanguage Language of the pixel function (only "C" and "Python"
451 : * are supported currently)
452 : * @since GDAL 2.3
453 : */
454 1 : void VRTDerivedRasterBand::SetPixelFunctionLanguage(const char *pszLanguage)
455 : {
456 1 : m_poPrivate->m_osLanguage = pszLanguage;
457 1 : }
458 :
459 : /************************************************************************/
460 : /* SetSkipNonContributingSources() */
461 : /************************************************************************/
462 :
463 : /** Whether sources that do not intersect the VRTRasterBand RasterIO() requested
464 : * region should be omitted. By default, data for all sources, including ones
465 : * that do not intersect it, are passed to the pixel function. By setting this
466 : * parameter to true, only sources that intersect the requested region will be
467 : * passed.
468 : *
469 : * @param bSkip whether to skip non-contributing sources
470 : *
471 : * @since 3.12
472 : */
473 5 : void VRTDerivedRasterBand::SetSkipNonContributingSources(bool bSkip)
474 : {
475 5 : m_poPrivate->m_bSkipNonContributingSources = bSkip;
476 5 : m_poPrivate->m_bSkipNonContributingSourcesSpecified = true;
477 5 : }
478 :
479 : /************************************************************************/
480 : /* SetSourceTransferType() */
481 : /************************************************************************/
482 :
483 : /**
484 : * Set the transfer type to be used to obtain pixel information from
485 : * all of the sources. If unset, the transfer type used will be the
486 : * same as the derived band data type. This makes it possible, for
487 : * example, to pass CFloat32 source pixels to the pixel function, even
488 : * if the pixel function generates a raster for a derived band that
489 : * is of type Byte.
490 : *
491 : * @param eDataTypeIn Data type to use to obtain pixel information from
492 : * the sources to be passed to the derived band pixel function.
493 : */
494 21 : void VRTDerivedRasterBand::SetSourceTransferType(GDALDataType eDataTypeIn)
495 : {
496 21 : eSourceTransferType = eDataTypeIn;
497 21 : }
498 :
499 : /************************************************************************/
500 : /* InitializePython() */
501 : /************************************************************************/
502 :
503 384 : bool VRTDerivedRasterBand::InitializePython()
504 : {
505 384 : if (m_poPrivate->m_bPythonInitializationDone)
506 321 : return m_poPrivate->m_bPythonInitializationSuccess;
507 :
508 63 : m_poPrivate->m_bPythonInitializationDone = true;
509 63 : m_poPrivate->m_bPythonInitializationSuccess = false;
510 :
511 63 : const size_t nIdxDot = osFuncName.rfind(".");
512 126 : CPLString osPythonModule;
513 126 : CPLString osPythonFunction;
514 63 : if (nIdxDot != std::string::npos)
515 : {
516 29 : osPythonModule = osFuncName.substr(0, nIdxDot);
517 29 : osPythonFunction = osFuncName.substr(nIdxDot + 1);
518 : }
519 : else
520 : {
521 34 : osPythonFunction = osFuncName;
522 : }
523 :
524 : #ifndef GDAL_VRT_DISABLE_PYTHON
525 : const char *pszPythonEnabled =
526 63 : CPLGetConfigOption("GDAL_VRT_ENABLE_PYTHON", nullptr);
527 : #else
528 : const char *pszPythonEnabled = "NO";
529 : #endif
530 : const CPLString osPythonEnabled(
531 126 : pszPythonEnabled ? pszPythonEnabled : GDAL_VRT_ENABLE_PYTHON_DEFAULT);
532 :
533 63 : if (EQUAL(osPythonEnabled, "TRUSTED_MODULES"))
534 : {
535 12 : bool bIsTrustedModule = false;
536 : const CPLString osVRTTrustedModules(
537 12 : CPLGetConfigOption("GDAL_VRT_PYTHON_TRUSTED_MODULES", ""));
538 12 : if (!osPythonModule.empty())
539 : {
540 : char **papszTrustedModules =
541 10 : CSLTokenizeString2(osVRTTrustedModules, ",", 0);
542 23 : for (char **papszIter = papszTrustedModules;
543 23 : !bIsTrustedModule && papszIter && *papszIter; ++papszIter)
544 : {
545 13 : const char *pszIterModule = *papszIter;
546 13 : size_t nIterModuleLen = strlen(pszIterModule);
547 13 : if (nIterModuleLen > 2 &&
548 12 : strncmp(pszIterModule + nIterModuleLen - 2, ".*", 2) == 0)
549 : {
550 2 : bIsTrustedModule =
551 2 : (strncmp(osPythonModule, pszIterModule,
552 3 : nIterModuleLen - 2) == 0) &&
553 1 : (osPythonModule.size() == nIterModuleLen - 2 ||
554 0 : (osPythonModule.size() >= nIterModuleLen &&
555 0 : osPythonModule[nIterModuleLen - 1] == '.'));
556 : }
557 11 : else if (nIterModuleLen >= 1 &&
558 11 : pszIterModule[nIterModuleLen - 1] == '*')
559 : {
560 4 : bIsTrustedModule = (strncmp(osPythonModule, pszIterModule,
561 : nIterModuleLen - 1) == 0);
562 : }
563 : else
564 : {
565 7 : bIsTrustedModule =
566 7 : (strcmp(osPythonModule, pszIterModule) == 0);
567 : }
568 : }
569 10 : CSLDestroy(papszTrustedModules);
570 : }
571 :
572 12 : if (!bIsTrustedModule)
573 : {
574 7 : if (osPythonModule.empty())
575 : {
576 2 : CPLError(
577 : CE_Failure, CPLE_AppDefined,
578 : "Python code needs to be executed, but it uses inline code "
579 : "in the VRT whereas the current policy is to trust only "
580 : "code from external trusted modules (defined in the "
581 : "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option). "
582 : "If you trust the code in %s, you can set the "
583 : "GDAL_VRT_ENABLE_PYTHON configuration option to YES.",
584 2 : GetDataset() ? GetDataset()->GetDescription()
585 : : "(unknown VRT)");
586 : }
587 5 : else if (osVRTTrustedModules.empty())
588 : {
589 2 : CPLError(
590 : CE_Failure, CPLE_AppDefined,
591 : "Python code needs to be executed, but it uses code "
592 : "from module '%s', whereas the current policy is to "
593 : "trust only code from modules defined in the "
594 : "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option, "
595 : "which is currently unset. "
596 : "If you trust the code in '%s', you can add module '%s' "
597 : "to GDAL_VRT_PYTHON_TRUSTED_MODULES (or set the "
598 : "GDAL_VRT_ENABLE_PYTHON configuration option to YES).",
599 : osPythonModule.c_str(),
600 1 : GetDataset() ? GetDataset()->GetDescription()
601 : : "(unknown VRT)",
602 : osPythonModule.c_str());
603 : }
604 : else
605 : {
606 8 : CPLError(
607 : CE_Failure, CPLE_AppDefined,
608 : "Python code needs to be executed, but it uses code "
609 : "from module '%s', whereas the current policy is to "
610 : "trust only code from modules '%s' (defined in the "
611 : "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option). "
612 : "If you trust the code in '%s', you can add module '%s' "
613 : "to GDAL_VRT_PYTHON_TRUSTED_MODULES (or set the "
614 : "GDAL_VRT_ENABLE_PYTHON configuration option to YES).",
615 : osPythonModule.c_str(), osVRTTrustedModules.c_str(),
616 4 : GetDataset() ? GetDataset()->GetDescription()
617 : : "(unknown VRT)",
618 : osPythonModule.c_str());
619 : }
620 7 : return false;
621 : }
622 : }
623 :
624 : #ifdef disabled_because_this_is_probably_broken_by_design
625 : // See https://lwn.net/Articles/574215/
626 : // and http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
627 : else if (EQUAL(osPythonEnabled, "IF_SAFE"))
628 : {
629 : bool bSafe = true;
630 : // If the function comes from another module, then we don't know
631 : if (!osPythonModule.empty())
632 : {
633 : CPLDebug("VRT", "Python function is from another module");
634 : bSafe = false;
635 : }
636 :
637 : CPLString osCode(m_poPrivate->m_osCode);
638 :
639 : // Reject all imports except a few trusted modules
640 : const char *const apszTrustedImports[] = {
641 : "import math",
642 : "from math import",
643 : "import numpy", // caution: numpy has lots of I/O functions !
644 : "from numpy import",
645 : // TODO: not sure if importing arbitrary stuff from numba is OK
646 : // so let's just restrict to jit.
647 : "from numba import jit",
648 :
649 : // Not imports but still whitelisted, whereas other __ is banned
650 : "__init__",
651 : "__call__",
652 : };
653 : for (size_t i = 0; i < CPL_ARRAYSIZE(apszTrustedImports); ++i)
654 : {
655 : osCode.replaceAll(CPLString(apszTrustedImports[i]), "");
656 : }
657 :
658 : // Some dangerous built-in functions or numpy functions
659 : const char *const apszUntrusted[] = {
660 : "import", // and __import__
661 : "eval", "compile", "open",
662 : "load", // reload, numpy.load
663 : "file", // and exec_file, numpy.fromfile, numpy.tofile
664 : "input", // and raw_input
665 : "save", // numpy.save
666 : "memmap", // numpy.memmap
667 : "DataSource", // numpy.DataSource
668 : "genfromtxt", // numpy.genfromtxt
669 : "getattr",
670 : "ctypeslib", // numpy.ctypeslib
671 : "testing", // numpy.testing
672 : "dump", // numpy.ndarray.dump
673 : "fromregex", // numpy.fromregex
674 : "__"};
675 : for (size_t i = 0; i < CPL_ARRAYSIZE(apszUntrusted); ++i)
676 : {
677 : if (osCode.find(apszUntrusted[i]) != std::string::npos)
678 : {
679 : CPLDebug("VRT", "Found '%s' word in Python code",
680 : apszUntrusted[i]);
681 : bSafe = false;
682 : }
683 : }
684 :
685 : if (!bSafe)
686 : {
687 : CPLError(CE_Failure, CPLE_AppDefined,
688 : "Python code needs to be executed, but we cannot verify "
689 : "if it is safe, so this is disabled by default. "
690 : "If you trust the code in %s, you can set the "
691 : "GDAL_VRT_ENABLE_PYTHON configuration option to YES.",
692 : GetDataset() ? GetDataset()->GetDescription()
693 : : "(unknown VRT)");
694 : return false;
695 : }
696 : }
697 : #endif // disabled_because_this_is_probably_broken_by_design
698 :
699 52 : else if (!EQUAL(osPythonEnabled, "YES") && !EQUAL(osPythonEnabled, "ON") &&
700 1 : !EQUAL(osPythonEnabled, "TRUE"))
701 : {
702 1 : if (pszPythonEnabled == nullptr)
703 : {
704 : // Note: this is dead code with our current default policy
705 : // GDAL_VRT_ENABLE_PYTHON == "TRUSTED_MODULES"
706 0 : CPLError(CE_Failure, CPLE_AppDefined,
707 : "Python code needs to be executed, but this is "
708 : "disabled by default. If you trust the code in %s, "
709 : "you can set the GDAL_VRT_ENABLE_PYTHON configuration "
710 : "option to YES.",
711 0 : GetDataset() ? GetDataset()->GetDescription()
712 : : "(unknown VRT)");
713 : }
714 : else
715 : {
716 1 : CPLError(
717 : CE_Failure, CPLE_AppDefined,
718 : "Python code in %s needs to be executed, but this has been "
719 : "explicitly disabled.",
720 1 : GetDataset() ? GetDataset()->GetDescription()
721 : : "(unknown VRT)");
722 : }
723 1 : return false;
724 : }
725 :
726 55 : if (!GDALPythonInitialize())
727 2 : return false;
728 :
729 : // Whether we should just use our own global mutex, in addition to Python
730 : // GIL locking.
731 106 : m_poPrivate->m_bExclusiveLock =
732 53 : CPLTestBool(CPLGetConfigOption("GDAL_VRT_PYTHON_EXCLUSIVE_LOCK", "NO"));
733 :
734 : // numba jit'ification doesn't seem to be thread-safe, so force use of
735 : // lock now and at first execution of function. Later executions seem to
736 : // be thread-safe. This problem doesn't seem to appear for code in
737 : // regular files
738 : const bool bUseExclusiveLock =
739 106 : m_poPrivate->m_bExclusiveLock ||
740 53 : m_poPrivate->m_osCode.find("@jit") != std::string::npos;
741 106 : GIL_Holder oHolder(bUseExclusiveLock);
742 :
743 : // As we don't want to depend on numpy C API/ABI, we use a trick to build
744 : // a numpy array object. We define a Python function to which we pass a
745 : // Python buffer object.
746 :
747 : // We need to build a unique module name, otherwise this will crash in
748 : // multithreaded use cases.
749 106 : CPLString osModuleName(CPLSPrintf("gdal_vrt_module_%p", this));
750 106 : PyObject *poCompiledString = Py_CompileString(
751 : ("import numpy\n"
752 : "def GDALCreateNumpyArray(buffer, dtype, height, width):\n"
753 : " return numpy.frombuffer(buffer, str(dtype.decode('ascii')))."
754 : "reshape([height, width])\n"
755 53 : "\n" +
756 53 : m_poPrivate->m_osCode)
757 : .c_str(),
758 : osModuleName, Py_file_input);
759 53 : if (poCompiledString == nullptr || PyErr_Occurred())
760 : {
761 1 : CPLError(CE_Failure, CPLE_AppDefined, "Couldn't compile code:\n%s",
762 2 : GetPyExceptionString().c_str());
763 1 : return false;
764 : }
765 : PyObject *poModule =
766 52 : PyImport_ExecCodeModule(osModuleName, poCompiledString);
767 52 : Py_DecRef(poCompiledString);
768 :
769 52 : if (poModule == nullptr || PyErr_Occurred())
770 : {
771 1 : CPLError(CE_Failure, CPLE_AppDefined, "%s",
772 2 : GetPyExceptionString().c_str());
773 1 : return false;
774 : }
775 :
776 : // Fetch user computation function
777 51 : if (!osPythonModule.empty())
778 : {
779 24 : PyObject *poUserModule = PyImport_ImportModule(osPythonModule);
780 24 : if (poUserModule == nullptr || PyErr_Occurred())
781 : {
782 1 : CPLString osException = GetPyExceptionString();
783 1 : if (!osException.empty() && osException.back() == '\n')
784 : {
785 1 : osException.pop_back();
786 : }
787 1 : if (osException.find("ModuleNotFoundError") == 0)
788 : {
789 1 : osException += ". You may need to define PYTHONPATH";
790 : }
791 1 : CPLError(CE_Failure, CPLE_AppDefined, "%s", osException.c_str());
792 1 : Py_DecRef(poModule);
793 1 : return false;
794 : }
795 46 : m_poPrivate->m_poUserFunction =
796 23 : PyObject_GetAttrString(poUserModule, osPythonFunction);
797 23 : Py_DecRef(poUserModule);
798 : }
799 : else
800 : {
801 54 : m_poPrivate->m_poUserFunction =
802 27 : PyObject_GetAttrString(poModule, osPythonFunction);
803 : }
804 50 : if (m_poPrivate->m_poUserFunction == nullptr || PyErr_Occurred())
805 : {
806 1 : CPLError(CE_Failure, CPLE_AppDefined, "%s",
807 2 : GetPyExceptionString().c_str());
808 1 : Py_DecRef(poModule);
809 1 : return false;
810 : }
811 49 : if (!PyCallable_Check(m_poPrivate->m_poUserFunction))
812 : {
813 1 : CPLError(CE_Failure, CPLE_AppDefined, "Object '%s' is not callable",
814 : osPythonFunction.c_str());
815 1 : Py_DecRef(poModule);
816 1 : return false;
817 : }
818 :
819 : // Fetch our GDALCreateNumpyArray python function
820 96 : m_poPrivate->m_poGDALCreateNumpyArray =
821 48 : PyObject_GetAttrString(poModule, "GDALCreateNumpyArray");
822 48 : if (m_poPrivate->m_poGDALCreateNumpyArray == nullptr || PyErr_Occurred())
823 : {
824 : // Shouldn't happen normally...
825 0 : CPLError(CE_Failure, CPLE_AppDefined, "%s",
826 0 : GetPyExceptionString().c_str());
827 0 : Py_DecRef(poModule);
828 0 : return false;
829 : }
830 48 : Py_DecRef(poModule);
831 :
832 48 : m_poPrivate->m_bPythonInitializationSuccess = true;
833 48 : return true;
834 : }
835 :
836 2686 : CPLErr VRTDerivedRasterBand::GetPixelFunctionArguments(
837 : const CPLString &osMetadata,
838 : const std::vector<int> &anMapBufferIdxToSourceIdx, int nXOff, int nYOff,
839 : std::vector<std::pair<CPLString, CPLString>> &oAdditionalArgs)
840 : {
841 :
842 5372 : auto poArgs = CPLXMLTreeCloser(CPLParseXMLString(osMetadata));
843 5372 : if (poArgs != nullptr && poArgs->eType == CXT_Element &&
844 2686 : !strcmp(poArgs->pszValue, "PixelFunctionArgumentsList"))
845 : {
846 12317 : for (CPLXMLNode *psIter = poArgs->psChild; psIter != nullptr;
847 9631 : psIter = psIter->psNext)
848 : {
849 9632 : if (psIter->eType == CXT_Element &&
850 9632 : !strcmp(psIter->pszValue, "Argument"))
851 : {
852 9632 : CPLString osName, osType, osValue;
853 9632 : auto pszName = CPLGetXMLValue(psIter, "name", nullptr);
854 9632 : if (pszName != nullptr)
855 5498 : osName = pszName;
856 9632 : auto pszType = CPLGetXMLValue(psIter, "type", nullptr);
857 9632 : if (pszType != nullptr)
858 9632 : osType = pszType;
859 9632 : auto pszValue = CPLGetXMLValue(psIter, "value", nullptr);
860 9632 : if (pszValue != nullptr)
861 4501 : osValue = pszValue;
862 9632 : if (osType == "constant" && osValue != "" && osName != "")
863 1 : oAdditionalArgs.push_back(
864 2 : std::pair<CPLString, CPLString>(osName, osValue));
865 9632 : if (osType == "builtin")
866 : {
867 4134 : const CPLString &osArgName = osValue;
868 4134 : CPLString osVal;
869 4134 : double dfVal = 0;
870 :
871 4134 : int success(FALSE);
872 4134 : if (osArgName == "NoData")
873 2681 : dfVal = this->GetNoDataValue(&success);
874 1453 : else if (osArgName == "scale")
875 3 : dfVal = this->GetScale(&success);
876 1450 : else if (osArgName == "offset")
877 2 : dfVal = this->GetOffset(&success);
878 1448 : else if (osArgName == "xoff")
879 : {
880 362 : dfVal = static_cast<double>(nXOff);
881 362 : success = true;
882 : }
883 1086 : else if (osArgName == "yoff")
884 : {
885 362 : dfVal = static_cast<double>(nYOff);
886 362 : success = true;
887 : }
888 724 : else if (osArgName == "geotransform")
889 : {
890 362 : GDALGeoTransform gt;
891 362 : if (GetDataset()->GetGeoTransform(gt) != CE_None)
892 : {
893 : // Do not fail here because the argument is most
894 : // likely not needed by the pixel function. If it
895 : // is needed, the pixel function can emit the error.
896 139 : continue;
897 : }
898 : osVal = CPLSPrintf(
899 446 : "%.17g,%.17g,%.17g,%.17g,%.17g,%.17g", gt[0], gt[1],
900 223 : gt[2], gt[3], gt[4], gt[5]);
901 223 : success = true;
902 : }
903 362 : else if (osArgName == "source_names")
904 : {
905 957 : for (size_t iBuffer = 0;
906 957 : iBuffer < anMapBufferIdxToSourceIdx.size();
907 : iBuffer++)
908 : {
909 595 : int iSource = anMapBufferIdxToSourceIdx[iBuffer];
910 595 : const VRTSource *poSource = papoSources[iSource];
911 :
912 595 : if (iBuffer > 0)
913 : {
914 240 : osVal += "|";
915 : }
916 :
917 595 : const auto &osSourceName = poSource->GetName();
918 595 : if (osSourceName.empty())
919 : {
920 42 : osVal += "B" + std::to_string(iBuffer + 1);
921 : }
922 : else
923 : {
924 553 : osVal += osSourceName;
925 : }
926 : }
927 :
928 362 : success = true;
929 : }
930 : else
931 : {
932 0 : CPLError(
933 : CE_Failure, CPLE_NotSupported,
934 : "PixelFunction builtin argument %s not supported",
935 : osArgName.c_str());
936 0 : return CE_Failure;
937 : }
938 3995 : if (!success)
939 : {
940 2573 : if (CPLTestBool(
941 : CPLGetXMLValue(psIter, "optional", "false")))
942 2572 : continue;
943 :
944 1 : CPLError(CE_Failure, CPLE_AppDefined,
945 : "Raster has no %s", osValue.c_str());
946 1 : return CE_Failure;
947 : }
948 :
949 1422 : if (osVal.empty())
950 : {
951 844 : osVal = CPLSPrintf("%.17g", dfVal);
952 : }
953 :
954 1422 : oAdditionalArgs.push_back(
955 2844 : std::pair<CPLString, CPLString>(osArgName, osVal));
956 1422 : CPLDebug("VRT",
957 : "Added builtin pixel function argument %s = %s",
958 : osArgName.c_str(), osVal.c_str());
959 : }
960 : }
961 : }
962 : }
963 :
964 2685 : return CE_None;
965 : }
966 :
967 : /************************************************************************/
968 : /* IRasterIO() */
969 : /************************************************************************/
970 :
971 : /**
972 : * Read/write a region of image data for this band.
973 : *
974 : * Each of the sources for this derived band will be read and passed to
975 : * the derived band pixel function. The pixel function is responsible
976 : * for applying whatever algorithm is necessary to generate this band's
977 : * pixels from the sources.
978 : *
979 : * The sources will be read using the transfer type specified for sources
980 : * using SetSourceTransferType(). If no transfer type has been set for
981 : * this derived band, the band's data type will be used as the transfer type.
982 : *
983 : * @see gdalrasterband
984 : *
985 : * @param eRWFlag Either GF_Read to read a region of data, or GT_Write to
986 : * write a region of data.
987 : *
988 : * @param nXOff The pixel offset to the top left corner of the region
989 : * of the band to be accessed. This would be zero to start from the left side.
990 : *
991 : * @param nYOff The line offset to the top left corner of the region
992 : * of the band to be accessed. This would be zero to start from the top.
993 : *
994 : * @param nXSize The width of the region of the band to be accessed in pixels.
995 : *
996 : * @param nYSize The height of the region of the band to be accessed in lines.
997 : *
998 : * @param pData The buffer into which the data should be read, or from which
999 : * it should be written. This buffer must contain at least nBufXSize *
1000 : * nBufYSize words of type eBufType. It is organized in left to right,
1001 : * top to bottom pixel order. Spacing is controlled by the nPixelSpace,
1002 : * and nLineSpace parameters.
1003 : *
1004 : * @param nBufXSize The width of the buffer image into which the desired
1005 : * region is to be read, or from which it is to be written.
1006 : *
1007 : * @param nBufYSize The height of the buffer image into which the desired
1008 : * region is to be read, or from which it is to be written.
1009 : *
1010 : * @param eBufType The type of the pixel values in the pData data buffer. The
1011 : * pixel values will automatically be translated to/from the GDALRasterBand
1012 : * data type as needed.
1013 : *
1014 : * @param nPixelSpace The byte offset from the start of one pixel value in
1015 : * pData to the start of the next pixel value within a scanline. If defaulted
1016 : * (0) the size of the datatype eBufType is used.
1017 : *
1018 : * @param nLineSpace The byte offset from the start of one scanline in
1019 : * pData to the start of the next. If defaulted the size of the datatype
1020 : * eBufType * nBufXSize is used.
1021 : *
1022 : * @return CE_Failure if the access fails, otherwise CE_None.
1023 : */
1024 4129 : CPLErr VRTDerivedRasterBand::IRasterIO(
1025 : GDALRWFlag eRWFlag, int nXOff, int nYOff, int nXSize, int nYSize,
1026 : void *pData, int nBufXSize, int nBufYSize, GDALDataType eBufType,
1027 : GSpacing nPixelSpace, GSpacing nLineSpace, GDALRasterIOExtraArg *psExtraArg)
1028 : {
1029 4129 : if (eRWFlag == GF_Write)
1030 : {
1031 1 : CPLError(CE_Failure, CPLE_AppDefined,
1032 : "Writing through VRTSourcedRasterBand is not supported.");
1033 1 : return CE_Failure;
1034 : }
1035 :
1036 : if constexpr (sizeof(GSpacing) > sizeof(int))
1037 : {
1038 4128 : if (nLineSpace > INT_MAX)
1039 : {
1040 0 : if (nBufYSize == 1)
1041 : {
1042 0 : nLineSpace = 0;
1043 : }
1044 : else
1045 : {
1046 0 : CPLError(CE_Failure, CPLE_NotSupported,
1047 : "VRTDerivedRasterBand::IRasterIO(): nLineSpace > "
1048 : "INT_MAX not supported");
1049 0 : return CE_Failure;
1050 : }
1051 : }
1052 : }
1053 :
1054 4128 : const int nBufTypeSize = GDALGetDataTypeSizeBytes(eBufType);
1055 4128 : GDALDataType eSrcType = eSourceTransferType;
1056 4128 : if (eSrcType == GDT_Unknown || eSrcType >= GDT_TypeCount)
1057 : {
1058 : // Check the largest data type for all sources
1059 3230 : GDALDataType eAllSrcType = GDT_Unknown;
1060 107197 : for (int iSource = 0; iSource < nSources; iSource++)
1061 : {
1062 103984 : if (papoSources[iSource]->GetType() ==
1063 103984 : VRTSimpleSource::GetTypeStatic())
1064 : {
1065 103967 : const auto poSS =
1066 103967 : static_cast<VRTSimpleSource *>(papoSources[iSource]);
1067 103967 : auto l_poBand = poSS->GetRasterBand();
1068 103967 : if (l_poBand)
1069 : {
1070 103967 : eAllSrcType = GDALDataTypeUnion(
1071 : eAllSrcType, l_poBand->GetRasterDataType());
1072 : }
1073 : else
1074 : {
1075 0 : eAllSrcType = GDT_Unknown;
1076 0 : break;
1077 : }
1078 : }
1079 : else
1080 : {
1081 17 : eAllSrcType = GDT_Unknown;
1082 17 : break;
1083 : }
1084 : }
1085 :
1086 3230 : if (eAllSrcType != GDT_Unknown)
1087 2832 : eSrcType = eAllSrcType;
1088 : else
1089 398 : eSrcType = eBufType;
1090 : }
1091 4128 : const int nSrcTypeSize = GDALGetDataTypeSizeBytes(eSrcType);
1092 :
1093 : // If acquiring the region of interest in a single time is going
1094 : // to consume too much RAM, split in halves, and that recursively
1095 : // until we get below m_nAllowedRAMUsage.
1096 4128 : if (m_poPrivate->m_nAllowedRAMUsage > 0 && nSources > 0 &&
1097 3744 : nSrcTypeSize > 0 && nBufXSize == nXSize && nBufYSize == nYSize &&
1098 3742 : static_cast<GIntBig>(nBufXSize) * nBufYSize >
1099 3742 : m_poPrivate->m_nAllowedRAMUsage / (nSources * nSrcTypeSize))
1100 : {
1101 999 : CPLErr eErr = SplitRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize,
1102 : pData, nBufXSize, nBufYSize, eBufType,
1103 : nPixelSpace, nLineSpace, psExtraArg);
1104 999 : if (eErr != CE_Warning)
1105 999 : return eErr;
1106 : }
1107 :
1108 : /* -------------------------------------------------------------------- */
1109 : /* Do we have overviews that would be appropriate to satisfy */
1110 : /* this request? */
1111 : /* -------------------------------------------------------------------- */
1112 3129 : if ((nBufXSize < nXSize || nBufYSize < nYSize) && GetOverviewCount() > 0)
1113 : {
1114 0 : if (OverviewRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData,
1115 : nBufXSize, nBufYSize, eBufType, nPixelSpace,
1116 0 : nLineSpace, psExtraArg) == CE_None)
1117 0 : return CE_None;
1118 : }
1119 :
1120 : /* ---- Get pixel function for band ---- */
1121 3129 : const std::pair<PixelFunc, std::string> *poPixelFunc = nullptr;
1122 6258 : std::vector<std::pair<CPLString, CPLString>> oAdditionalArgs;
1123 :
1124 3129 : if (EQUAL(m_poPrivate->m_osLanguage, "C"))
1125 : {
1126 : poPixelFunc =
1127 2735 : VRTDerivedRasterBand::GetPixelFunction(osFuncName.c_str());
1128 2735 : if (poPixelFunc == nullptr)
1129 : {
1130 1 : CPLError(CE_Failure, CPLE_IllegalArg,
1131 : "VRTDerivedRasterBand::IRasterIO:"
1132 : "Derived band pixel function '%s' not registered.",
1133 : osFuncName.c_str());
1134 1 : return CE_Failure;
1135 : }
1136 : }
1137 :
1138 : /* TODO: It would be nice to use a MallocBlock function for each
1139 : individual buffer that would recycle blocks of memory from a
1140 : cache by reassigning blocks that are nearly the same size.
1141 : A corresponding FreeBlock might only truly free if the total size
1142 : of freed blocks gets to be too great of a percentage of the size
1143 : of the allocated blocks. */
1144 :
1145 : // Get buffers for each source.
1146 3128 : const int nBufferRadius = m_poPrivate->m_nBufferRadius;
1147 3128 : if (nBufferRadius > (INT_MAX - nBufXSize) / 2 ||
1148 3128 : nBufferRadius > (INT_MAX - nBufYSize) / 2)
1149 : {
1150 0 : CPLError(CE_Failure, CPLE_AppDefined,
1151 : "Integer overflow: "
1152 : "nBufferRadius > (INT_MAX - nBufXSize) / 2 || "
1153 : "nBufferRadius > (INT_MAX - nBufYSize) / 2)");
1154 0 : return CE_Failure;
1155 : }
1156 3128 : const int nExtBufXSize = nBufXSize + 2 * nBufferRadius;
1157 3128 : const int nExtBufYSize = nBufYSize + 2 * nBufferRadius;
1158 3128 : int nBufferCount = 0;
1159 :
1160 6256 : std::vector<std::unique_ptr<void, VSIFreeReleaser>> apBuffers(nSources);
1161 6256 : std::vector<int> anMapBufferIdxToSourceIdx(nSources);
1162 3128 : bool bSkipOutputBufferInitialization = nSources > 0;
1163 106849 : for (int iSource = 0; iSource < nSources; iSource++)
1164 : {
1165 103735 : if (m_poPrivate->m_bSkipNonContributingSources &&
1166 14 : papoSources[iSource]->IsSimpleSource())
1167 : {
1168 14 : bool bError = false;
1169 : double dfReqXOff, dfReqYOff, dfReqXSize, dfReqYSize;
1170 : int nReqXOff, nReqYOff, nReqXSize, nReqYSize;
1171 : int nOutXOff, nOutYOff, nOutXSize, nOutYSize;
1172 14 : auto poSource =
1173 14 : static_cast<VRTSimpleSource *>(papoSources[iSource]);
1174 14 : if (!poSource->GetSrcDstWindow(
1175 : nXOff, nYOff, nXSize, nYSize, nBufXSize, nBufYSize,
1176 : &dfReqXOff, &dfReqYOff, &dfReqXSize, &dfReqYSize, &nReqXOff,
1177 : &nReqYOff, &nReqXSize, &nReqYSize, &nOutXOff, &nOutYOff,
1178 : &nOutXSize, &nOutYSize, bError))
1179 : {
1180 4 : if (bError)
1181 : {
1182 0 : return CE_Failure;
1183 : }
1184 :
1185 : // Skip non contributing source
1186 4 : bSkipOutputBufferInitialization = false;
1187 4 : continue;
1188 : }
1189 : }
1190 :
1191 103717 : anMapBufferIdxToSourceIdx[nBufferCount] = iSource;
1192 103717 : apBuffers[nBufferCount].reset(
1193 : VSI_MALLOC3_VERBOSE(nSrcTypeSize, nExtBufXSize, nExtBufYSize));
1194 103717 : if (apBuffers[nBufferCount] == nullptr)
1195 : {
1196 0 : return CE_Failure;
1197 : }
1198 :
1199 103717 : bool bBufferInit = true;
1200 103717 : if (papoSources[iSource]->IsSimpleSource())
1201 : {
1202 103716 : const auto poSS =
1203 103716 : static_cast<VRTSimpleSource *>(papoSources[iSource]);
1204 103716 : auto l_poBand = poSS->GetRasterBand();
1205 103716 : if (l_poBand != nullptr && poSS->m_dfSrcXOff == 0.0 &&
1206 873 : poSS->m_dfSrcYOff == 0.0 &&
1207 1746 : poSS->m_dfSrcXOff + poSS->m_dfSrcXSize ==
1208 873 : l_poBand->GetXSize() &&
1209 1710 : poSS->m_dfSrcYOff + poSS->m_dfSrcYSize ==
1210 855 : l_poBand->GetYSize() &&
1211 855 : poSS->m_dfDstXOff == 0.0 && poSS->m_dfDstYOff == 0.0 &&
1212 208281 : poSS->m_dfDstXOff + poSS->m_dfDstXSize == nRasterXSize &&
1213 849 : poSS->m_dfDstYOff + poSS->m_dfDstYSize == nRasterYSize)
1214 : {
1215 849 : if (papoSources[iSource]->GetType() ==
1216 849 : VRTSimpleSource::GetTypeStatic())
1217 824 : bBufferInit = false;
1218 : }
1219 : else
1220 : {
1221 102867 : bSkipOutputBufferInitialization = false;
1222 : }
1223 : }
1224 : else
1225 : {
1226 1 : bSkipOutputBufferInitialization = false;
1227 : }
1228 103717 : if (bBufferInit)
1229 : {
1230 : /* ------------------------------------------------------------ */
1231 : /* #4045: Initialize the newly allocated buffers before handing */
1232 : /* them off to the sources. These buffers are packed, so we */
1233 : /* don't need any special line-by-line handling when a nonzero */
1234 : /* nodata value is set. */
1235 : /* ------------------------------------------------------------ */
1236 102893 : if (!m_bNoDataValueSet || m_dfNoDataValue == 0)
1237 : {
1238 102648 : memset(apBuffers[nBufferCount].get(), 0,
1239 102648 : static_cast<size_t>(nSrcTypeSize) * nExtBufXSize *
1240 102648 : nExtBufYSize);
1241 : }
1242 : else
1243 : {
1244 490 : GDALCopyWords64(
1245 245 : &m_dfNoDataValue, GDT_Float64, 0,
1246 245 : static_cast<GByte *>(apBuffers[nBufferCount].get()),
1247 : eSrcType, nSrcTypeSize,
1248 245 : static_cast<GPtrDiff_t>(nExtBufXSize) * nExtBufYSize);
1249 : }
1250 : }
1251 :
1252 103717 : ++nBufferCount;
1253 : }
1254 :
1255 : /* -------------------------------------------------------------------- */
1256 : /* Initialize the buffer to some background value. Use the */
1257 : /* nodata value if available. */
1258 : /* -------------------------------------------------------------------- */
1259 3128 : if (bSkipOutputBufferInitialization)
1260 : {
1261 : // Do nothing
1262 : }
1263 2571 : else if (nPixelSpace == nBufTypeSize &&
1264 2553 : (!m_bNoDataValueSet || m_dfNoDataValue == 0))
1265 : {
1266 2467 : memset(pData, 0,
1267 2467 : static_cast<size_t>(nBufXSize) * nBufYSize * nBufTypeSize);
1268 : }
1269 104 : else if (m_bNoDataValueSet)
1270 : {
1271 86 : double dfWriteValue = m_dfNoDataValue;
1272 :
1273 237 : for (int iLine = 0; iLine < nBufYSize; iLine++)
1274 : {
1275 151 : GDALCopyWords64(&dfWriteValue, GDT_Float64, 0,
1276 151 : static_cast<GByte *>(pData) + nLineSpace * iLine,
1277 : eBufType, static_cast<int>(nPixelSpace), nBufXSize);
1278 : }
1279 : }
1280 :
1281 : // No contributing sources and SkipNonContributingSources mode ?
1282 : // Do not call the pixel function and just return the 0/nodata initialized
1283 : // output buffer.
1284 3128 : if (nBufferCount == 0 && m_poPrivate->m_bSkipNonContributingSources)
1285 : {
1286 1 : return CE_None;
1287 : }
1288 :
1289 : GDALRasterIOExtraArg sExtraArg;
1290 3127 : GDALCopyRasterIOExtraArg(&sExtraArg, psExtraArg);
1291 :
1292 3127 : int nXShiftInBuffer = 0;
1293 3127 : int nYShiftInBuffer = 0;
1294 3127 : int nExtBufXSizeReq = nExtBufXSize;
1295 3127 : int nExtBufYSizeReq = nExtBufYSize;
1296 :
1297 3127 : int nXOffExt = nXOff;
1298 3127 : int nYOffExt = nYOff;
1299 3127 : int nXSizeExt = nXSize;
1300 3127 : int nYSizeExt = nYSize;
1301 :
1302 3127 : if (nBufferRadius)
1303 : {
1304 9 : double dfXRatio = static_cast<double>(nXSize) / nBufXSize;
1305 9 : double dfYRatio = static_cast<double>(nYSize) / nBufYSize;
1306 :
1307 9 : if (!sExtraArg.bFloatingPointWindowValidity)
1308 : {
1309 9 : sExtraArg.dfXOff = nXOff;
1310 9 : sExtraArg.dfYOff = nYOff;
1311 9 : sExtraArg.dfXSize = nXSize;
1312 9 : sExtraArg.dfYSize = nYSize;
1313 : }
1314 :
1315 9 : sExtraArg.dfXOff -= dfXRatio * nBufferRadius;
1316 9 : sExtraArg.dfYOff -= dfYRatio * nBufferRadius;
1317 9 : sExtraArg.dfXSize += 2 * dfXRatio * nBufferRadius;
1318 9 : sExtraArg.dfYSize += 2 * dfYRatio * nBufferRadius;
1319 9 : if (sExtraArg.dfXOff < 0)
1320 : {
1321 9 : nXShiftInBuffer = -static_cast<int>(sExtraArg.dfXOff / dfXRatio);
1322 9 : nExtBufXSizeReq -= nXShiftInBuffer;
1323 9 : sExtraArg.dfXSize += sExtraArg.dfXOff;
1324 9 : sExtraArg.dfXOff = 0;
1325 : }
1326 9 : if (sExtraArg.dfYOff < 0)
1327 : {
1328 9 : nYShiftInBuffer = -static_cast<int>(sExtraArg.dfYOff / dfYRatio);
1329 9 : nExtBufYSizeReq -= nYShiftInBuffer;
1330 9 : sExtraArg.dfYSize += sExtraArg.dfYOff;
1331 9 : sExtraArg.dfYOff = 0;
1332 : }
1333 9 : if (sExtraArg.dfXOff + sExtraArg.dfXSize > nRasterXSize)
1334 : {
1335 9 : nExtBufXSizeReq -= static_cast<int>(
1336 9 : (sExtraArg.dfXOff + sExtraArg.dfXSize - nRasterXSize) /
1337 : dfXRatio);
1338 9 : sExtraArg.dfXSize = nRasterXSize - sExtraArg.dfXOff;
1339 : }
1340 9 : if (sExtraArg.dfYOff + sExtraArg.dfYSize > nRasterYSize)
1341 : {
1342 9 : nExtBufYSizeReq -= static_cast<int>(
1343 9 : (sExtraArg.dfYOff + sExtraArg.dfYSize - nRasterYSize) /
1344 : dfYRatio);
1345 9 : sExtraArg.dfYSize = nRasterYSize - sExtraArg.dfYOff;
1346 : }
1347 :
1348 9 : nXOffExt = static_cast<int>(sExtraArg.dfXOff);
1349 9 : nYOffExt = static_cast<int>(sExtraArg.dfYOff);
1350 18 : nXSizeExt = std::min(static_cast<int>(sExtraArg.dfXSize + 0.5),
1351 9 : nRasterXSize - nXOffExt);
1352 18 : nYSizeExt = std::min(static_cast<int>(sExtraArg.dfYSize + 0.5),
1353 9 : nRasterYSize - nYOffExt);
1354 : }
1355 :
1356 : // Load values for sources into packed buffers.
1357 3127 : CPLErr eErr = CE_None;
1358 6254 : VRTSource::WorkingState oWorkingState;
1359 106844 : for (int iBuffer = 0; iBuffer < nBufferCount && eErr == CE_None; iBuffer++)
1360 : {
1361 103717 : const int iSource = anMapBufferIdxToSourceIdx[iBuffer];
1362 103717 : GByte *pabyBuffer = static_cast<GByte *>(apBuffers[iBuffer].get());
1363 103717 : eErr = static_cast<VRTSource *>(papoSources[iSource])
1364 207434 : ->RasterIO(
1365 : eSrcType, nXOffExt, nYOffExt, nXSizeExt, nYSizeExt,
1366 103717 : pabyBuffer + (static_cast<size_t>(nYShiftInBuffer) *
1367 103717 : nExtBufXSize +
1368 103717 : nXShiftInBuffer) *
1369 103717 : nSrcTypeSize,
1370 : nExtBufXSizeReq, nExtBufYSizeReq, eSrcType, nSrcTypeSize,
1371 103717 : static_cast<GSpacing>(nSrcTypeSize) * nExtBufXSize,
1372 103717 : &sExtraArg, oWorkingState);
1373 :
1374 : // Extend first lines
1375 103726 : for (int iY = 0; iY < nYShiftInBuffer; iY++)
1376 : {
1377 9 : memcpy(pabyBuffer +
1378 9 : static_cast<size_t>(iY) * nExtBufXSize * nSrcTypeSize,
1379 9 : pabyBuffer + static_cast<size_t>(nYShiftInBuffer) *
1380 9 : nExtBufXSize * nSrcTypeSize,
1381 9 : static_cast<size_t>(nExtBufXSize) * nSrcTypeSize);
1382 : }
1383 : // Extend last lines
1384 103726 : for (int iY = nYShiftInBuffer + nExtBufYSizeReq; iY < nExtBufYSize;
1385 : iY++)
1386 : {
1387 9 : memcpy(pabyBuffer +
1388 9 : static_cast<size_t>(iY) * nExtBufXSize * nSrcTypeSize,
1389 9 : pabyBuffer + static_cast<size_t>(nYShiftInBuffer +
1390 9 : nExtBufYSizeReq - 1) *
1391 9 : nExtBufXSize * nSrcTypeSize,
1392 9 : static_cast<size_t>(nExtBufXSize) * nSrcTypeSize);
1393 : }
1394 : // Extend first cols
1395 103717 : if (nXShiftInBuffer)
1396 : {
1397 1116 : for (int iY = 0; iY < nExtBufYSize; iY++)
1398 : {
1399 2214 : for (int iX = 0; iX < nXShiftInBuffer; iX++)
1400 : {
1401 1107 : memcpy(pabyBuffer +
1402 1107 : static_cast<size_t>(iY * nExtBufXSize + iX) *
1403 1107 : nSrcTypeSize,
1404 1107 : pabyBuffer +
1405 1107 : (static_cast<size_t>(iY) * nExtBufXSize +
1406 1107 : nXShiftInBuffer) *
1407 1107 : nSrcTypeSize,
1408 : nSrcTypeSize);
1409 : }
1410 : }
1411 : }
1412 : // Extent last cols
1413 103717 : if (nXShiftInBuffer + nExtBufXSizeReq < nExtBufXSize)
1414 : {
1415 1116 : for (int iY = 0; iY < nExtBufYSize; iY++)
1416 : {
1417 1107 : for (int iX = nXShiftInBuffer + nExtBufXSizeReq;
1418 2214 : iX < nExtBufXSize; iX++)
1419 : {
1420 1107 : memcpy(pabyBuffer +
1421 1107 : (static_cast<size_t>(iY) * nExtBufXSize + iX) *
1422 1107 : nSrcTypeSize,
1423 1107 : pabyBuffer +
1424 1107 : (static_cast<size_t>(iY) * nExtBufXSize +
1425 1107 : nXShiftInBuffer + nExtBufXSizeReq - 1) *
1426 1107 : nSrcTypeSize,
1427 : nSrcTypeSize);
1428 : }
1429 : }
1430 : }
1431 : }
1432 :
1433 : // Collect any pixel function arguments
1434 3127 : if (poPixelFunc != nullptr && !poPixelFunc->second.empty())
1435 : {
1436 5372 : if (GetPixelFunctionArguments(poPixelFunc->second,
1437 : anMapBufferIdxToSourceIdx, nXOff, nYOff,
1438 2686 : oAdditionalArgs) != CE_None)
1439 : {
1440 1 : eErr = CE_Failure;
1441 : }
1442 : }
1443 :
1444 : // Apply pixel function.
1445 3127 : if (eErr == CE_None && EQUAL(m_poPrivate->m_osLanguage, "Python"))
1446 : {
1447 : // numpy doesn't have native cint16/cint32/cfloat16
1448 393 : if (eSrcType == GDT_CInt16 || eSrcType == GDT_CInt32 ||
1449 : eSrcType == GDT_CFloat16)
1450 : {
1451 2 : CPLError(CE_Failure, CPLE_AppDefined,
1452 : "CInt16/CInt32/CFloat16 data type not supported for "
1453 : "SourceTransferType");
1454 24 : return CE_Failure;
1455 : }
1456 391 : if (eDataType == GDT_CInt16 || eDataType == GDT_CInt32 ||
1457 387 : eDataType == GDT_CFloat16)
1458 : {
1459 7 : CPLError(
1460 : CE_Failure, CPLE_AppDefined,
1461 : "CInt16/CInt32/CFloat16 data type not supported for data type");
1462 7 : return CE_Failure;
1463 : }
1464 :
1465 384 : if (!InitializePython())
1466 15 : return CE_Failure;
1467 :
1468 0 : std::unique_ptr<GByte, VSIFreeReleaser> pabyTmpBuffer;
1469 : // Do we need a temporary buffer or can we use directly the output
1470 : // buffer ?
1471 369 : if (nBufferRadius != 0 || eDataType != eBufType ||
1472 25 : nPixelSpace != nBufTypeSize ||
1473 25 : nLineSpace != static_cast<GSpacing>(nBufTypeSize) * nBufXSize)
1474 : {
1475 344 : pabyTmpBuffer.reset(static_cast<GByte *>(VSI_CALLOC_VERBOSE(
1476 : static_cast<size_t>(nExtBufXSize) * nExtBufYSize,
1477 : GDALGetDataTypeSizeBytes(eDataType))));
1478 344 : if (!pabyTmpBuffer)
1479 0 : return CE_Failure;
1480 : }
1481 :
1482 : {
1483 : const bool bUseExclusiveLock =
1484 738 : m_poPrivate->m_bExclusiveLock ||
1485 417 : (m_poPrivate->m_bFirstTime &&
1486 48 : m_poPrivate->m_osCode.find("@jit") != std::string::npos);
1487 369 : m_poPrivate->m_bFirstTime = false;
1488 369 : GIL_Holder oHolder(bUseExclusiveLock);
1489 :
1490 : // Prepare target numpy array
1491 369 : PyObject *poPyDstArray = GDALCreateNumpyArray(
1492 369 : m_poPrivate->m_poGDALCreateNumpyArray,
1493 713 : pabyTmpBuffer ? pabyTmpBuffer.get() : pData, eDataType,
1494 : nExtBufYSize, nExtBufXSize);
1495 369 : if (!poPyDstArray)
1496 : {
1497 0 : return CE_Failure;
1498 : }
1499 :
1500 : // Wrap source buffers as input numpy arrays
1501 369 : PyObject *pyArgInputArray = PyTuple_New(nBufferCount);
1502 399 : for (int i = 0; i < nBufferCount; i++)
1503 : {
1504 30 : GByte *pabyBuffer = static_cast<GByte *>(apBuffers[i].get());
1505 60 : PyObject *poPySrcArray = GDALCreateNumpyArray(
1506 30 : m_poPrivate->m_poGDALCreateNumpyArray, pabyBuffer, eSrcType,
1507 : nExtBufYSize, nExtBufXSize);
1508 30 : CPLAssert(poPySrcArray);
1509 30 : PyTuple_SetItem(pyArgInputArray, i, poPySrcArray);
1510 : }
1511 :
1512 : // Create arguments
1513 369 : PyObject *pyArgs = PyTuple_New(10);
1514 369 : PyTuple_SetItem(pyArgs, 0, pyArgInputArray);
1515 369 : PyTuple_SetItem(pyArgs, 1, poPyDstArray);
1516 369 : PyTuple_SetItem(pyArgs, 2, PyLong_FromLong(nXOff));
1517 369 : PyTuple_SetItem(pyArgs, 3, PyLong_FromLong(nYOff));
1518 369 : PyTuple_SetItem(pyArgs, 4, PyLong_FromLong(nXSize));
1519 369 : PyTuple_SetItem(pyArgs, 5, PyLong_FromLong(nYSize));
1520 369 : PyTuple_SetItem(pyArgs, 6, PyLong_FromLong(nRasterXSize));
1521 369 : PyTuple_SetItem(pyArgs, 7, PyLong_FromLong(nRasterYSize));
1522 369 : PyTuple_SetItem(pyArgs, 8, PyLong_FromLong(nBufferRadius));
1523 :
1524 369 : GDALGeoTransform gt;
1525 369 : if (GetDataset())
1526 369 : GetDataset()->GetGeoTransform(gt);
1527 369 : PyObject *pyGT = PyTuple_New(6);
1528 2583 : for (int i = 0; i < 6; i++)
1529 2214 : PyTuple_SetItem(pyGT, i, PyFloat_FromDouble(gt[i]));
1530 369 : PyTuple_SetItem(pyArgs, 9, pyGT);
1531 :
1532 : // Prepare kwargs
1533 369 : PyObject *pyKwargs = PyDict_New();
1534 379 : for (size_t i = 0; i < m_poPrivate->m_oFunctionArgs.size(); ++i)
1535 : {
1536 : const char *pszKey =
1537 10 : m_poPrivate->m_oFunctionArgs[i].first.c_str();
1538 : const char *pszValue =
1539 10 : m_poPrivate->m_oFunctionArgs[i].second.c_str();
1540 10 : PyDict_SetItemString(
1541 : pyKwargs, pszKey,
1542 : PyBytes_FromStringAndSize(pszValue, strlen(pszValue)));
1543 : }
1544 :
1545 : // Call user function
1546 : PyObject *pRetValue =
1547 369 : PyObject_Call(m_poPrivate->m_poUserFunction, pyArgs, pyKwargs);
1548 :
1549 369 : Py_DecRef(pyArgs);
1550 369 : Py_DecRef(pyKwargs);
1551 :
1552 369 : if (ErrOccurredEmitCPLError())
1553 : {
1554 2 : eErr = CE_Failure;
1555 : }
1556 369 : if (pRetValue)
1557 367 : Py_DecRef(pRetValue);
1558 : } // End of GIL section
1559 :
1560 369 : if (pabyTmpBuffer)
1561 : {
1562 : // Copy numpy destination array to user buffer
1563 41228 : for (int iY = 0; iY < nBufYSize; iY++)
1564 : {
1565 : size_t nSrcOffset =
1566 40882 : (static_cast<size_t>(iY + nBufferRadius) * nExtBufXSize +
1567 40882 : nBufferRadius) *
1568 40882 : GDALGetDataTypeSizeBytes(eDataType);
1569 40878 : GDALCopyWords64(pabyTmpBuffer.get() + nSrcOffset, eDataType,
1570 : GDALGetDataTypeSizeBytes(eDataType),
1571 40881 : static_cast<GByte *>(pData) + iY * nLineSpace,
1572 : eBufType, static_cast<int>(nPixelSpace),
1573 : nBufXSize);
1574 : }
1575 : }
1576 : }
1577 2734 : else if (eErr == CE_None && poPixelFunc != nullptr)
1578 : {
1579 2733 : CPLStringList aosArgs;
1580 :
1581 2733 : oAdditionalArgs.insert(oAdditionalArgs.end(),
1582 2733 : m_poPrivate->m_oFunctionArgs.begin(),
1583 5466 : m_poPrivate->m_oFunctionArgs.end());
1584 6149 : for (const auto &oArg : oAdditionalArgs)
1585 : {
1586 3416 : const char *pszKey = oArg.first.c_str();
1587 3416 : const char *pszValue = oArg.second.c_str();
1588 3416 : aosArgs.SetNameValue(pszKey, pszValue);
1589 : }
1590 :
1591 : static_assert(sizeof(apBuffers[0]) == sizeof(void *));
1592 2733 : eErr = (poPixelFunc->first)(
1593 : // We cast vector<unique_ptr<void>>.data() as void**. This is OK
1594 : // given above static_assert
1595 2733 : reinterpret_cast<void **>(apBuffers.data()), nBufferCount, pData,
1596 : nBufXSize, nBufYSize, eSrcType, eBufType,
1597 : static_cast<int>(nPixelSpace), static_cast<int>(nLineSpace),
1598 2733 : aosArgs.List());
1599 : }
1600 :
1601 3103 : return eErr;
1602 : }
1603 :
1604 : /************************************************************************/
1605 : /* IGetDataCoverageStatus() */
1606 : /************************************************************************/
1607 :
1608 57 : int VRTDerivedRasterBand::IGetDataCoverageStatus(
1609 : int /* nXOff */, int /* nYOff */, int /* nXSize */, int /* nYSize */,
1610 : int /* nMaskFlagStop */, double *pdfDataPct)
1611 : {
1612 57 : if (pdfDataPct != nullptr)
1613 0 : *pdfDataPct = -1.0;
1614 : return GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED |
1615 57 : GDAL_DATA_COVERAGE_STATUS_DATA;
1616 : }
1617 :
1618 : /************************************************************************/
1619 : /* XMLInit() */
1620 : /************************************************************************/
1621 :
1622 1454 : CPLErr VRTDerivedRasterBand::XMLInit(const CPLXMLNode *psTree,
1623 : const char *pszVRTPath,
1624 : VRTMapSharedResources &oMapSharedSources)
1625 :
1626 : {
1627 : const CPLErr eErr =
1628 1454 : VRTSourcedRasterBand::XMLInit(psTree, pszVRTPath, oMapSharedSources);
1629 1454 : if (eErr != CE_None)
1630 0 : return eErr;
1631 :
1632 : // Read derived pixel function type.
1633 1454 : SetPixelFunctionName(CPLGetXMLValue(psTree, "PixelFunctionType", nullptr));
1634 1454 : if (osFuncName.empty())
1635 : {
1636 1 : CPLError(CE_Failure, CPLE_AppDefined, "PixelFunctionType missing");
1637 1 : return CE_Failure;
1638 : }
1639 :
1640 1453 : m_poPrivate->m_osLanguage =
1641 1453 : CPLGetXMLValue(psTree, "PixelFunctionLanguage", "C");
1642 1528 : if (!EQUAL(m_poPrivate->m_osLanguage, "C") &&
1643 75 : !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1644 : {
1645 1 : CPLError(CE_Failure, CPLE_NotSupported,
1646 : "Unsupported PixelFunctionLanguage");
1647 1 : return CE_Failure;
1648 : }
1649 :
1650 1452 : m_poPrivate->m_osCode = CPLGetXMLValue(psTree, "PixelFunctionCode", "");
1651 1491 : if (!m_poPrivate->m_osCode.empty() &&
1652 39 : !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1653 : {
1654 1 : CPLError(CE_Failure, CPLE_NotSupported,
1655 : "PixelFunctionCode can only be used with Python");
1656 1 : return CE_Failure;
1657 : }
1658 :
1659 1451 : m_poPrivate->m_nBufferRadius =
1660 1451 : atoi(CPLGetXMLValue(psTree, "BufferRadius", "0"));
1661 1451 : if (m_poPrivate->m_nBufferRadius < 0 || m_poPrivate->m_nBufferRadius > 1024)
1662 : {
1663 1 : CPLError(CE_Failure, CPLE_AppDefined, "Invalid value for BufferRadius");
1664 1 : return CE_Failure;
1665 : }
1666 1461 : if (m_poPrivate->m_nBufferRadius != 0 &&
1667 11 : !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1668 : {
1669 1 : CPLError(CE_Failure, CPLE_NotSupported,
1670 : "BufferRadius can only be used with Python");
1671 1 : return CE_Failure;
1672 : }
1673 :
1674 : const CPLXMLNode *const psArgs =
1675 1449 : CPLGetXMLNode(psTree, "PixelFunctionArguments");
1676 1449 : if (psArgs != nullptr)
1677 : {
1678 2595 : for (const CPLXMLNode *psIter = psArgs->psChild; psIter;
1679 1376 : psIter = psIter->psNext)
1680 : {
1681 1376 : if (psIter->eType == CXT_Attribute)
1682 : {
1683 1376 : AddPixelFunctionArgument(psIter->pszValue,
1684 1376 : psIter->psChild->pszValue);
1685 : }
1686 : }
1687 : }
1688 :
1689 : // Read optional source transfer data type.
1690 : const char *pszTypeName =
1691 1449 : CPLGetXMLValue(psTree, "SourceTransferType", nullptr);
1692 1449 : if (pszTypeName != nullptr)
1693 : {
1694 888 : eSourceTransferType = GDALGetDataTypeByName(pszTypeName);
1695 : }
1696 :
1697 : // Whether to skip non contributing sources
1698 : const char *pszSkipNonContributingSources =
1699 1449 : CPLGetXMLValue(psTree, "SkipNonContributingSources", nullptr);
1700 1449 : if (pszSkipNonContributingSources)
1701 : {
1702 2 : SetSkipNonContributingSources(
1703 2 : CPLTestBool(pszSkipNonContributingSources));
1704 : }
1705 :
1706 1449 : return CE_None;
1707 : }
1708 :
1709 : /************************************************************************/
1710 : /* SerializeToXML() */
1711 : /************************************************************************/
1712 :
1713 47 : CPLXMLNode *VRTDerivedRasterBand::SerializeToXML(const char *pszVRTPath,
1714 : bool &bHasWarnedAboutRAMUsage,
1715 : size_t &nAccRAMUsage)
1716 : {
1717 47 : CPLXMLNode *psTree = VRTSourcedRasterBand::SerializeToXML(
1718 : pszVRTPath, bHasWarnedAboutRAMUsage, nAccRAMUsage);
1719 :
1720 : /* -------------------------------------------------------------------- */
1721 : /* Set subclass. */
1722 : /* -------------------------------------------------------------------- */
1723 47 : CPLCreateXMLNode(CPLCreateXMLNode(psTree, CXT_Attribute, "subClass"),
1724 : CXT_Text, "VRTDerivedRasterBand");
1725 :
1726 : /* ---- Encode DerivedBand-specific fields ---- */
1727 47 : if (!EQUAL(m_poPrivate->m_osLanguage, "C"))
1728 : {
1729 5 : CPLSetXMLValue(psTree, "PixelFunctionLanguage",
1730 5 : m_poPrivate->m_osLanguage);
1731 : }
1732 47 : if (!osFuncName.empty())
1733 46 : CPLSetXMLValue(psTree, "PixelFunctionType", osFuncName.c_str());
1734 47 : if (!m_poPrivate->m_oFunctionArgs.empty())
1735 : {
1736 : CPLXMLNode *psArgs =
1737 40 : CPLCreateXMLNode(psTree, CXT_Element, "PixelFunctionArguments");
1738 109 : for (size_t i = 0; i < m_poPrivate->m_oFunctionArgs.size(); ++i)
1739 : {
1740 69 : const char *pszKey = m_poPrivate->m_oFunctionArgs[i].first.c_str();
1741 : const char *pszValue =
1742 69 : m_poPrivate->m_oFunctionArgs[i].second.c_str();
1743 69 : CPLCreateXMLNode(CPLCreateXMLNode(psArgs, CXT_Attribute, pszKey),
1744 : CXT_Text, pszValue);
1745 : }
1746 : }
1747 47 : if (!m_poPrivate->m_osCode.empty())
1748 : {
1749 4 : if (m_poPrivate->m_osCode.find("<![CDATA[") == std::string::npos)
1750 : {
1751 4 : CPLCreateXMLNode(
1752 : CPLCreateXMLNode(psTree, CXT_Element, "PixelFunctionCode"),
1753 : CXT_Literal,
1754 8 : ("<![CDATA[" + m_poPrivate->m_osCode + "]]>").c_str());
1755 : }
1756 : else
1757 : {
1758 0 : CPLSetXMLValue(psTree, "PixelFunctionCode", m_poPrivate->m_osCode);
1759 : }
1760 : }
1761 47 : if (m_poPrivate->m_nBufferRadius != 0)
1762 1 : CPLSetXMLValue(psTree, "BufferRadius",
1763 1 : CPLSPrintf("%d", m_poPrivate->m_nBufferRadius));
1764 47 : if (this->eSourceTransferType != GDT_Unknown)
1765 4 : CPLSetXMLValue(psTree, "SourceTransferType",
1766 : GDALGetDataTypeName(eSourceTransferType));
1767 :
1768 47 : if (m_poPrivate->m_bSkipNonContributingSourcesSpecified)
1769 : {
1770 1 : CPLSetXMLValue(psTree, "SkipNonContributingSources",
1771 1 : m_poPrivate->m_bSkipNonContributingSources ? "true"
1772 : : "false");
1773 : }
1774 :
1775 47 : return psTree;
1776 : }
1777 :
1778 : /************************************************************************/
1779 : /* GetMinimum() */
1780 : /************************************************************************/
1781 :
1782 5 : double VRTDerivedRasterBand::GetMinimum(int *pbSuccess)
1783 : {
1784 5 : return GDALRasterBand::GetMinimum(pbSuccess);
1785 : }
1786 :
1787 : /************************************************************************/
1788 : /* GetMaximum() */
1789 : /************************************************************************/
1790 :
1791 5 : double VRTDerivedRasterBand::GetMaximum(int *pbSuccess)
1792 : {
1793 5 : return GDALRasterBand::GetMaximum(pbSuccess);
1794 : }
1795 :
1796 : /************************************************************************/
1797 : /* ComputeRasterMinMax() */
1798 : /************************************************************************/
1799 :
1800 15 : CPLErr VRTDerivedRasterBand::ComputeRasterMinMax(int bApproxOK,
1801 : double *adfMinMax)
1802 : {
1803 15 : return GDALRasterBand::ComputeRasterMinMax(bApproxOK, adfMinMax);
1804 : }
1805 :
1806 : /************************************************************************/
1807 : /* ComputeStatistics() */
1808 : /************************************************************************/
1809 :
1810 1 : CPLErr VRTDerivedRasterBand::ComputeStatistics(int bApproxOK, double *pdfMin,
1811 : double *pdfMax, double *pdfMean,
1812 : double *pdfStdDev,
1813 : GDALProgressFunc pfnProgress,
1814 : void *pProgressData)
1815 :
1816 : {
1817 1 : return GDALRasterBand::ComputeStatistics(bApproxOK, pdfMin, pdfMax, pdfMean,
1818 : pdfStdDev, pfnProgress,
1819 1 : pProgressData);
1820 : }
1821 :
1822 : /************************************************************************/
1823 : /* GetHistogram() */
1824 : /************************************************************************/
1825 :
1826 1 : CPLErr VRTDerivedRasterBand::GetHistogram(double dfMin, double dfMax,
1827 : int nBuckets, GUIntBig *panHistogram,
1828 : int bIncludeOutOfRange, int bApproxOK,
1829 : GDALProgressFunc pfnProgress,
1830 : void *pProgressData)
1831 :
1832 : {
1833 1 : return VRTRasterBand::GetHistogram(dfMin, dfMax, nBuckets, panHistogram,
1834 : bIncludeOutOfRange, bApproxOK,
1835 1 : pfnProgress, pProgressData);
1836 : }
1837 :
1838 : /*! @endcond */
|