LCOV - code coverage report
Current view: top level - ogr - ogrgeometryfactory.cpp (source / functions) Hit Total Coverage
Test: gdal_filtered.info Lines: 2429 2651 91.6 %
Date: 2025-12-02 17:42:13 Functions: 87 89 97.8 %

          Line data    Source code
       1             : /******************************************************************************
       2             :  *
       3             :  * Project:  OpenGIS Simple Features Reference Implementation
       4             :  * Purpose:  Factory for converting geometry to and from well known binary
       5             :  *           format.
       6             :  * Author:   Frank Warmerdam, warmerdam@pobox.com
       7             :  *
       8             :  ******************************************************************************
       9             :  * Copyright (c) 1999, Frank Warmerdam
      10             :  * Copyright (c) 2008-2014, Even Rouault <even dot rouault at spatialys dot com>
      11             :  *
      12             :  * SPDX-License-Identifier: MIT
      13             :  ****************************************************************************/
      14             : 
      15             : #include "cpl_port.h"
      16             : #include "cpl_quad_tree.h"
      17             : 
      18             : #include "cpl_conv.h"
      19             : #include "cpl_error.h"
      20             : #include "cpl_string.h"
      21             : #include "ogr_geometry.h"
      22             : #include "ogr_api.h"
      23             : #include "ogr_core.h"
      24             : #include "ogr_geos.h"
      25             : #include "ogr_sfcgal.h"
      26             : #include "ogr_p.h"
      27             : #include "ogr_spatialref.h"
      28             : #include "ogr_srs_api.h"
      29             : #ifdef HAVE_GEOS
      30             : #include "ogr_geos.h"
      31             : #endif
      32             : 
      33             : #include "ogrgeojsongeometry.h"
      34             : 
      35             : #include <cassert>
      36             : #include <climits>
      37             : #include <cmath>
      38             : #include <cstdlib>
      39             : #include <cstring>
      40             : #include <cstddef>
      41             : 
      42             : #include <algorithm>
      43             : #include <limits>
      44             : #include <new>
      45             : #include <utility>
      46             : #include <vector>
      47             : 
      48             : #ifndef HAVE_GEOS
      49             : #define UNUSED_IF_NO_GEOS CPL_UNUSED
      50             : #else
      51             : #define UNUSED_IF_NO_GEOS
      52             : #endif
      53             : 
      54             : /************************************************************************/
      55             : /*                           createFromWkb()                            */
      56             : /************************************************************************/
      57             : 
      58             : /**
      59             :  * \brief Create a geometry object of the appropriate type from its
      60             :  * well known binary representation.
      61             :  *
      62             :  * Note that if nBytes is passed as zero, no checking can be done on whether
      63             :  * the pabyData is sufficient.  This can result in a crash if the input
      64             :  * data is corrupt.  This function returns no indication of the number of
      65             :  * bytes from the data source actually used to represent the returned
      66             :  * geometry object.  Use OGRGeometry::WkbSize() on the returned geometry to
      67             :  * establish the number of bytes it required in WKB format.
      68             :  *
      69             :  * Also note that this is a static method, and that there
      70             :  * is no need to instantiate an OGRGeometryFactory object.
      71             :  *
      72             :  * The C function OGR_G_CreateFromWkb() is the same as this method.
      73             :  *
      74             :  * @param pabyData pointer to the input BLOB data.
      75             :  * @param poSR pointer to the spatial reference to be assigned to the
      76             :  *             created geometry object.  This may be NULL.
      77             :  * @param ppoReturn the newly created geometry object will be assigned to the
      78             :  *                  indicated pointer on return.  This will be NULL in case
      79             :  *                  of failure. If not NULL, *ppoReturn should be freed with
      80             :  *                  OGRGeometryFactory::destroyGeometry() after use.
      81             :  * @param nBytes the number of bytes available in pabyData, or -1 if it isn't
      82             :  *               known
      83             :  * @param eWkbVariant WKB variant.
      84             :  *
      85             :  * @return OGRERR_NONE if all goes well, otherwise any of
      86             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
      87             :  * OGRERR_CORRUPT_DATA may be returned.
      88             :  */
      89             : 
      90       59840 : OGRErr OGRGeometryFactory::createFromWkb(const void *pabyData,
      91             :                                          const OGRSpatialReference *poSR,
      92             :                                          OGRGeometry **ppoReturn, size_t nBytes,
      93             :                                          OGRwkbVariant eWkbVariant)
      94             : 
      95             : {
      96       59840 :     size_t nBytesConsumedOutIgnored = 0;
      97       59840 :     return createFromWkb(pabyData, poSR, ppoReturn, nBytes, eWkbVariant,
      98      119680 :                          nBytesConsumedOutIgnored);
      99             : }
     100             : 
     101             : /**
     102             :  * \brief Create a geometry object of the appropriate type from its
     103             :  * well known binary representation.
     104             :  *
     105             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     106             :  * the pabyData is sufficient.  This can result in a crash if the input
     107             :  * data is corrupt.  This function returns no indication of the number of
     108             :  * bytes from the data source actually used to represent the returned
     109             :  * geometry object.  Use OGRGeometry::WkbSize() on the returned geometry to
     110             :  * establish the number of bytes it required in WKB format.
     111             :  *
     112             :  * Also note that this is a static method, and that there
     113             :  * is no need to instantiate an OGRGeometryFactory object.
     114             :  *
     115             :  * The C function OGR_G_CreateFromWkb() is the same as this method.
     116             :  *
     117             :  * @param pabyData pointer to the input BLOB data.
     118             :  * @param poSR pointer to the spatial reference to be assigned to the
     119             :  *             created geometry object.  This may be NULL.
     120             :  * @param ppoReturn the newly created geometry object will be assigned to the
     121             :  *                  indicated pointer on return.  This will be NULL in case
     122             :  *                  of failure. If not NULL, *ppoReturn should be freed with
     123             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     124             :  * @param nBytes the number of bytes available in pabyData, or -1 if it isn't
     125             :  *               known
     126             :  * @param eWkbVariant WKB variant.
     127             :  * @param nBytesConsumedOut output parameter. Number of bytes consumed.
     128             :  *
     129             :  * @return OGRERR_NONE if all goes well, otherwise any of
     130             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     131             :  * OGRERR_CORRUPT_DATA may be returned.
     132             :  */
     133             : 
     134       99044 : OGRErr OGRGeometryFactory::createFromWkb(const void *pabyData,
     135             :                                          const OGRSpatialReference *poSR,
     136             :                                          OGRGeometry **ppoReturn, size_t nBytes,
     137             :                                          OGRwkbVariant eWkbVariant,
     138             :                                          size_t &nBytesConsumedOut)
     139             : 
     140             : {
     141       99044 :     const GByte *l_pabyData = static_cast<const GByte *>(pabyData);
     142       99044 :     nBytesConsumedOut = 0;
     143       99044 :     *ppoReturn = nullptr;
     144             : 
     145       99044 :     if (nBytes < 9 && nBytes != static_cast<size_t>(-1))
     146        1394 :         return OGRERR_NOT_ENOUGH_DATA;
     147             : 
     148             :     /* -------------------------------------------------------------------- */
     149             :     /*      Get the byte order byte.  The extra tests are to work around    */
     150             :     /*      bug sin the WKB of DB2 v7.2 as identified by Safe Software.     */
     151             :     /* -------------------------------------------------------------------- */
     152       97650 :     const int nByteOrder = DB2_V72_FIX_BYTE_ORDER(*l_pabyData);
     153       97650 :     if (nByteOrder != wkbXDR && nByteOrder != wkbNDR)
     154             :     {
     155         295 :         CPLDebug("OGR",
     156             :                  "OGRGeometryFactory::createFromWkb() - got corrupt data.\n"
     157             :                  "%02X%02X%02X%02X%02X%02X%02X%02X%02X",
     158         295 :                  l_pabyData[0], l_pabyData[1], l_pabyData[2], l_pabyData[3],
     159         295 :                  l_pabyData[4], l_pabyData[5], l_pabyData[6], l_pabyData[7],
     160         295 :                  l_pabyData[8]);
     161         295 :         return OGRERR_CORRUPT_DATA;
     162             :     }
     163             : 
     164             :     /* -------------------------------------------------------------------- */
     165             :     /*      Get the geometry feature type.  For now we assume that          */
     166             :     /*      geometry type is between 0 and 255 so we only have to fetch     */
     167             :     /*      one byte.                                                       */
     168             :     /* -------------------------------------------------------------------- */
     169             : 
     170       97355 :     OGRwkbGeometryType eGeometryType = wkbUnknown;
     171             :     const OGRErr err =
     172       97355 :         OGRReadWKBGeometryType(l_pabyData, eWkbVariant, &eGeometryType);
     173             : 
     174       97355 :     if (err != OGRERR_NONE)
     175         563 :         return err;
     176             : 
     177             :     /* -------------------------------------------------------------------- */
     178             :     /*      Instantiate a geometry of the appropriate type, and             */
     179             :     /*      initialize from the input stream.                               */
     180             :     /* -------------------------------------------------------------------- */
     181       96792 :     OGRGeometry *poGeom = createGeometry(eGeometryType);
     182             : 
     183       96791 :     if (poGeom == nullptr)
     184           0 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
     185             : 
     186             :     /* -------------------------------------------------------------------- */
     187             :     /*      Import from binary.                                             */
     188             :     /* -------------------------------------------------------------------- */
     189      193583 :     const OGRErr eErr = poGeom->importFromWkb(l_pabyData, nBytes, eWkbVariant,
     190       96791 :                                               nBytesConsumedOut);
     191       96792 :     if (eErr != OGRERR_NONE)
     192             :     {
     193        7315 :         delete poGeom;
     194        7315 :         return eErr;
     195             :     }
     196             : 
     197             :     /* -------------------------------------------------------------------- */
     198             :     /*      Assign spatial reference system.                                */
     199             :     /* -------------------------------------------------------------------- */
     200             : 
     201       93038 :     if (poGeom->hasCurveGeometry() &&
     202        3561 :         CPLTestBool(CPLGetConfigOption("OGR_STROKE_CURVE", "FALSE")))
     203             :     {
     204           5 :         OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
     205           5 :         delete poGeom;
     206           5 :         poGeom = poNewGeom;
     207             :     }
     208       89477 :     poGeom->assignSpatialReference(poSR);
     209       89477 :     *ppoReturn = poGeom;
     210             : 
     211       89477 :     return OGRERR_NONE;
     212             : }
     213             : 
     214             : /************************************************************************/
     215             : /*                        OGR_G_CreateFromWkb()                         */
     216             : /************************************************************************/
     217             : /**
     218             :  * \brief Create a geometry object of the appropriate type from its
     219             :  * well known binary representation.
     220             :  *
     221             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     222             :  * the pabyData is sufficient.  This can result in a crash if the input
     223             :  * data is corrupt.  This function returns no indication of the number of
     224             :  * bytes from the data source actually used to represent the returned
     225             :  * geometry object.  Use OGR_G_WkbSize() on the returned geometry to
     226             :  * establish the number of bytes it required in WKB format.
     227             :  *
     228             :  * The OGRGeometryFactory::createFromWkb() CPP method is the same as this
     229             :  * function.
     230             :  *
     231             :  * @param pabyData pointer to the input BLOB data.
     232             :  * @param hSRS handle to the spatial reference to be assigned to the
     233             :  *             created geometry object.  This may be NULL.
     234             :  * @param phGeometry the newly created geometry object will
     235             :  * be assigned to the indicated handle on return.  This will be NULL in case
     236             :  * of failure. If not NULL, *phGeometry should be freed with
     237             :  * OGR_G_DestroyGeometry() after use.
     238             :  * @param nBytes the number of bytes of data available in pabyData, or -1
     239             :  * if it is not known, but assumed to be sufficient.
     240             :  *
     241             :  * @return OGRERR_NONE if all goes well, otherwise any of
     242             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     243             :  * OGRERR_CORRUPT_DATA may be returned.
     244             :  */
     245             : 
     246           2 : OGRErr CPL_DLL OGR_G_CreateFromWkb(const void *pabyData,
     247             :                                    OGRSpatialReferenceH hSRS,
     248             :                                    OGRGeometryH *phGeometry, int nBytes)
     249             : 
     250             : {
     251           2 :     return OGRGeometryFactory::createFromWkb(
     252           2 :         pabyData, OGRSpatialReference::FromHandle(hSRS),
     253           2 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes);
     254             : }
     255             : 
     256             : /************************************************************************/
     257             : /*                      OGR_G_CreateFromWkbEx()                         */
     258             : /************************************************************************/
     259             : /**
     260             :  * \brief Create a geometry object of the appropriate type from its
     261             :  * well known binary representation.
     262             :  *
     263             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     264             :  * the pabyData is sufficient.  This can result in a crash if the input
     265             :  * data is corrupt.  This function returns no indication of the number of
     266             :  * bytes from the data source actually used to represent the returned
     267             :  * geometry object.  Use OGR_G_WkbSizeEx() on the returned geometry to
     268             :  * establish the number of bytes it required in WKB format.
     269             :  *
     270             :  * The OGRGeometryFactory::createFromWkb() CPP method is the same as this
     271             :  * function.
     272             :  *
     273             :  * @param pabyData pointer to the input BLOB data.
     274             :  * @param hSRS handle to the spatial reference to be assigned to the
     275             :  *             created geometry object.  This may be NULL.
     276             :  * @param phGeometry the newly created geometry object will
     277             :  * be assigned to the indicated handle on return.  This will be NULL in case
     278             :  * of failure. If not NULL, *phGeometry should be freed with
     279             :  * OGR_G_DestroyGeometry() after use.
     280             :  * @param nBytes the number of bytes of data available in pabyData, or -1
     281             :  * if it is not known, but assumed to be sufficient.
     282             :  *
     283             :  * @return OGRERR_NONE if all goes well, otherwise any of
     284             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     285             :  * OGRERR_CORRUPT_DATA may be returned.
     286             :  * @since GDAL 3.3
     287             :  */
     288             : 
     289       31028 : OGRErr CPL_DLL OGR_G_CreateFromWkbEx(const void *pabyData,
     290             :                                      OGRSpatialReferenceH hSRS,
     291             :                                      OGRGeometryH *phGeometry, size_t nBytes)
     292             : 
     293             : {
     294       31028 :     return OGRGeometryFactory::createFromWkb(
     295       31028 :         pabyData, OGRSpatialReference::FromHandle(hSRS),
     296       31028 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes);
     297             : }
     298             : 
     299             : /************************************************************************/
     300             : /*                           createFromWkt()                            */
     301             : /************************************************************************/
     302             : 
     303             : /**
     304             :  * \brief Create a geometry object of the appropriate type from its
     305             :  * well known text representation.
     306             :  *
     307             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     308             :  *
     309             :  * @param ppszData input zero terminated string containing well known text
     310             :  *                representation of the geometry to be created.  The pointer
     311             :  *                is updated to point just beyond that last character consumed.
     312             :  * @param poSR pointer to the spatial reference to be assigned to the
     313             :  *             created geometry object.  This may be NULL.
     314             :  * @param ppoReturn the newly created geometry object will be assigned to the
     315             :  *                  indicated pointer on return.  This will be NULL if the
     316             :  *                  method fails. If not NULL, *ppoReturn should be freed with
     317             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     318             :  *
     319             :  *  <b>Example:</b>
     320             :  *
     321             :  * \code{.cpp}
     322             :  *    const char* wkt= "POINT(0 0)";
     323             :  *
     324             :  *    // cast because OGR_G_CreateFromWkt will move the pointer
     325             :  *    char* pszWkt = (char*) wkt;
     326             :  *    OGRSpatialReferenceH ref = OSRNewSpatialReference(NULL);
     327             :  *    OGRGeometryH new_geom;
     328             :  *    OSRSetAxisMappingStrategy(poSR, OAMS_TRADITIONAL_GIS_ORDER);
     329             :  *    OGRErr err = OGR_G_CreateFromWkt(&pszWkt, ref, &new_geom);
     330             :  * \endcode
     331             :  *
     332             :  *
     333             :  *
     334             :  * @return OGRERR_NONE if all goes well, otherwise any of
     335             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     336             :  * OGRERR_CORRUPT_DATA may be returned.
     337             :  */
     338             : 
     339      124082 : OGRErr OGRGeometryFactory::createFromWkt(const char **ppszData,
     340             :                                          const OGRSpatialReference *poSR,
     341             :                                          OGRGeometry **ppoReturn)
     342             : 
     343             : {
     344      124082 :     const char *pszInput = *ppszData;
     345      124082 :     *ppoReturn = nullptr;
     346             : 
     347             :     /* -------------------------------------------------------------------- */
     348             :     /*      Get the first token, which should be the geometry type.         */
     349             :     /* -------------------------------------------------------------------- */
     350      124082 :     char szToken[OGR_WKT_TOKEN_MAX] = {};
     351      124082 :     if (OGRWktReadToken(pszInput, szToken) == nullptr)
     352           0 :         return OGRERR_CORRUPT_DATA;
     353             : 
     354             :     /* -------------------------------------------------------------------- */
     355             :     /*      Instantiate a geometry of the appropriate type.                 */
     356             :     /* -------------------------------------------------------------------- */
     357      124082 :     OGRGeometry *poGeom = nullptr;
     358      124082 :     if (STARTS_WITH_CI(szToken, "POINT"))
     359             :     {
     360       97356 :         poGeom = new OGRPoint();
     361             :     }
     362       26726 :     else if (STARTS_WITH_CI(szToken, "LINESTRING"))
     363             :     {
     364        1669 :         poGeom = new OGRLineString();
     365             :     }
     366       25057 :     else if (STARTS_WITH_CI(szToken, "POLYGON"))
     367             :     {
     368       16532 :         poGeom = new OGRPolygon();
     369             :     }
     370        8525 :     else if (STARTS_WITH_CI(szToken, "TRIANGLE"))
     371             :     {
     372          62 :         poGeom = new OGRTriangle();
     373             :     }
     374        8463 :     else if (STARTS_WITH_CI(szToken, "GEOMETRYCOLLECTION"))
     375             :     {
     376         521 :         poGeom = new OGRGeometryCollection();
     377             :     }
     378        7942 :     else if (STARTS_WITH_CI(szToken, "MULTIPOLYGON"))
     379             :     {
     380         937 :         poGeom = new OGRMultiPolygon();
     381             :     }
     382        7005 :     else if (STARTS_WITH_CI(szToken, "MULTIPOINT"))
     383             :     {
     384         594 :         poGeom = new OGRMultiPoint();
     385             :     }
     386        6411 :     else if (STARTS_WITH_CI(szToken, "MULTILINESTRING"))
     387             :     {
     388         636 :         poGeom = new OGRMultiLineString();
     389             :     }
     390        5775 :     else if (STARTS_WITH_CI(szToken, "CIRCULARSTRING"))
     391             :     {
     392        3548 :         poGeom = new OGRCircularString();
     393             :     }
     394        2227 :     else if (STARTS_WITH_CI(szToken, "COMPOUNDCURVE"))
     395             :     {
     396         314 :         poGeom = new OGRCompoundCurve();
     397             :     }
     398        1913 :     else if (STARTS_WITH_CI(szToken, "CURVEPOLYGON"))
     399             :     {
     400         331 :         poGeom = new OGRCurvePolygon();
     401             :     }
     402        1582 :     else if (STARTS_WITH_CI(szToken, "MULTICURVE"))
     403             :     {
     404         145 :         poGeom = new OGRMultiCurve();
     405             :     }
     406        1437 :     else if (STARTS_WITH_CI(szToken, "MULTISURFACE"))
     407             :     {
     408         161 :         poGeom = new OGRMultiSurface();
     409             :     }
     410             : 
     411        1276 :     else if (STARTS_WITH_CI(szToken, "POLYHEDRALSURFACE"))
     412             :     {
     413          70 :         poGeom = new OGRPolyhedralSurface();
     414             :     }
     415             : 
     416        1206 :     else if (STARTS_WITH_CI(szToken, "TIN"))
     417             :     {
     418         123 :         poGeom = new OGRTriangulatedSurface();
     419             :     }
     420             : 
     421             :     else
     422             :     {
     423        1083 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
     424             :     }
     425             : 
     426             :     /* -------------------------------------------------------------------- */
     427             :     /*      Do the import.                                                  */
     428             :     /* -------------------------------------------------------------------- */
     429      122999 :     const OGRErr eErr = poGeom->importFromWkt(&pszInput);
     430             : 
     431             :     /* -------------------------------------------------------------------- */
     432             :     /*      Assign spatial reference system.                                */
     433             :     /* -------------------------------------------------------------------- */
     434      122999 :     if (eErr == OGRERR_NONE)
     435             :     {
     436      127232 :         if (poGeom->hasCurveGeometry() &&
     437        4472 :             CPLTestBool(CPLGetConfigOption("OGR_STROKE_CURVE", "FALSE")))
     438             :         {
     439           9 :             OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
     440           9 :             delete poGeom;
     441           9 :             poGeom = poNewGeom;
     442             :         }
     443      122760 :         poGeom->assignSpatialReference(poSR);
     444      122760 :         *ppoReturn = poGeom;
     445      122760 :         *ppszData = pszInput;
     446             :     }
     447             :     else
     448             :     {
     449         239 :         delete poGeom;
     450             :     }
     451             : 
     452      122999 :     return eErr;
     453             : }
     454             : 
     455             : /**
     456             :  * \brief Create a geometry object of the appropriate type from its
     457             :  * well known text representation.
     458             :  *
     459             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     460             :  *
     461             :  * @param pszData input zero terminated string containing well known text
     462             :  *                representation of the geometry to be created.
     463             :  * @param poSR pointer to the spatial reference to be assigned to the
     464             :  *             created geometry object.  This may be NULL.
     465             :  * @param ppoReturn the newly created geometry object will be assigned to the
     466             :  *                  indicated pointer on return.  This will be NULL if the
     467             :  *                  method fails. If not NULL, *ppoReturn should be freed with
     468             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     469             : 
     470             :  * @return OGRERR_NONE if all goes well, otherwise any of
     471             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     472             :  * OGRERR_CORRUPT_DATA may be returned.
     473             :  */
     474             : 
     475        2087 : OGRErr OGRGeometryFactory::createFromWkt(const char *pszData,
     476             :                                          const OGRSpatialReference *poSR,
     477             :                                          OGRGeometry **ppoReturn)
     478             : 
     479             : {
     480        2087 :     return createFromWkt(&pszData, poSR, ppoReturn);
     481             : }
     482             : 
     483             : /**
     484             :  * \brief Create a geometry object of the appropriate type from its
     485             :  * well known text representation.
     486             :  *
     487             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     488             :  *
     489             :  * @param pszData input zero terminated string containing well known text
     490             :  *                representation of the geometry to be created.
     491             :  * @param poSR pointer to the spatial reference to be assigned to the
     492             :  *             created geometry object.  This may be NULL.
     493             : 
     494             :  * @return a pair of the newly created geometry an error code of OGRERR_NONE
     495             :  * if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA,
     496             :  * OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA.
     497             :  *
     498             :  * @since GDAL 3.11
     499             :  */
     500             : 
     501             : std::pair<std::unique_ptr<OGRGeometry>, OGRErr>
     502        3837 : OGRGeometryFactory::createFromWkt(const char *pszData,
     503             :                                   const OGRSpatialReference *poSR)
     504             : 
     505             : {
     506        3837 :     std::unique_ptr<OGRGeometry> poGeom;
     507             :     OGRGeometry *poTmpGeom;
     508        3837 :     auto err = createFromWkt(&pszData, poSR, &poTmpGeom);
     509        3837 :     poGeom.reset(poTmpGeom);
     510             : 
     511        7674 :     return {std::move(poGeom), err};
     512             : }
     513             : 
     514             : /************************************************************************/
     515             : /*                        OGR_G_CreateFromWkt()                         */
     516             : /************************************************************************/
     517             : /**
     518             :  * \brief Create a geometry object of the appropriate type from its well known
     519             :  * text representation.
     520             :  *
     521             :  * The OGRGeometryFactory::createFromWkt CPP method is the same as this
     522             :  * function.
     523             :  *
     524             :  * @param ppszData input zero terminated string containing well known text
     525             :  *                representation of the geometry to be created.  The pointer
     526             :  *                is updated to point just beyond that last character consumed.
     527             :  * @param hSRS handle to the spatial reference to be assigned to the
     528             :  *             created geometry object.  This may be NULL.
     529             :  * @param phGeometry the newly created geometry object will be assigned to the
     530             :  *                  indicated handle on return.  This will be NULL if the
     531             :  *                  method fails. If not NULL, *phGeometry should be freed with
     532             :  *                  OGR_G_DestroyGeometry() after use.
     533             :  *
     534             :  * @return OGRERR_NONE if all goes well, otherwise any of
     535             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     536             :  * OGRERR_CORRUPT_DATA may be returned.
     537             :  */
     538             : 
     539      116451 : OGRErr CPL_DLL OGR_G_CreateFromWkt(char **ppszData, OGRSpatialReferenceH hSRS,
     540             :                                    OGRGeometryH *phGeometry)
     541             : 
     542             : {
     543      116451 :     return OGRGeometryFactory::createFromWkt(
     544             :         const_cast<const char **>(ppszData),
     545      116451 :         OGRSpatialReference::FromHandle(hSRS),
     546      116451 :         reinterpret_cast<OGRGeometry **>(phGeometry));
     547             : }
     548             : 
     549             : /************************************************************************/
     550             : /*                    OGR_G_CreateFromEnvelope()                        */
     551             : /************************************************************************/
     552             : /**
     553             :  * \brief Create a Polygon geometry from an envelope
     554             :  *
     555             :  *
     556             :  * @param dfMinX minimum X coordinate
     557             :  * @param dfMinY minimum Y coordinate
     558             :  * @param dfMaxX maximum X coordinate
     559             :  * @param dfMaxY maximum Y coordinate
     560             :  * @param hSRS handle to the spatial reference to be assigned to the
     561             :  *             created geometry object. This may be NULL.
     562             :  *
     563             :  * @return the newly created geometry. Should be freed with
     564             :  *          OGR_G_DestroyGeometry() after use.
     565             :  * @since 3.12
     566             :  */
     567             : 
     568           1 : OGRGeometryH CPL_DLL OGR_G_CreateFromEnvelope(double dfMinX, double dfMinY,
     569             :                                               double dfMaxX, double dfMaxY,
     570             :                                               OGRSpatialReferenceH hSRS)
     571             : 
     572             : {
     573             :     auto poPolygon =
     574           2 :         std::make_unique<OGRPolygon>(dfMinX, dfMinY, dfMaxX, dfMaxY);
     575             : 
     576           1 :     if (hSRS)
     577             :     {
     578           2 :         poPolygon->assignSpatialReference(
     579           1 :             OGRSpatialReference::FromHandle(hSRS));
     580             :     }
     581             : 
     582           2 :     return OGRGeometry::ToHandle(poPolygon.release());
     583             : }
     584             : 
     585             : /************************************************************************/
     586             : /*                           createGeometry()                           */
     587             : /************************************************************************/
     588             : 
     589             : /**
     590             :  * \brief Create an empty geometry of desired type.
     591             :  *
     592             :  * This is equivalent to allocating the desired geometry with new, but
     593             :  * the allocation is guaranteed to take place in the context of the
     594             :  * GDAL/OGR heap.
     595             :  *
     596             :  * This method is the same as the C function OGR_G_CreateGeometry().
     597             :  *
     598             :  * @param eGeometryType the type code of the geometry class to be instantiated.
     599             :  *
     600             :  * @return the newly create geometry or NULL on failure. Should be freed with
     601             :  *          OGRGeometryFactory::destroyGeometry() after use.
     602             :  */
     603             : 
     604             : OGRGeometry *
     605      265943 : OGRGeometryFactory::createGeometry(OGRwkbGeometryType eGeometryType)
     606             : 
     607             : {
     608      265943 :     OGRGeometry *poGeom = nullptr;
     609      265943 :     switch (wkbFlatten(eGeometryType))
     610             :     {
     611      183212 :         case wkbPoint:
     612      366424 :             poGeom = new (std::nothrow) OGRPoint();
     613      183212 :             break;
     614             : 
     615       11833 :         case wkbLineString:
     616       23666 :             poGeom = new (std::nothrow) OGRLineString();
     617       11833 :             break;
     618             : 
     619       29632 :         case wkbPolygon:
     620       59264 :             poGeom = new (std::nothrow) OGRPolygon();
     621       29632 :             break;
     622             : 
     623        2040 :         case wkbGeometryCollection:
     624        4080 :             poGeom = new (std::nothrow) OGRGeometryCollection();
     625        2040 :             break;
     626             : 
     627        3239 :         case wkbMultiPolygon:
     628        6478 :             poGeom = new (std::nothrow) OGRMultiPolygon();
     629        3239 :             break;
     630             : 
     631        1431 :         case wkbMultiPoint:
     632        2862 :             poGeom = new (std::nothrow) OGRMultiPoint();
     633        1431 :             break;
     634             : 
     635        1968 :         case wkbMultiLineString:
     636        3936 :             poGeom = new (std::nothrow) OGRMultiLineString();
     637        1968 :             break;
     638             : 
     639          61 :         case wkbLinearRing:
     640         122 :             poGeom = new (std::nothrow) OGRLinearRing();
     641          61 :             break;
     642             : 
     643          69 :         case wkbCircularString:
     644         138 :             poGeom = new (std::nothrow) OGRCircularString();
     645          69 :             break;
     646             : 
     647        1982 :         case wkbCompoundCurve:
     648        3964 :             poGeom = new (std::nothrow) OGRCompoundCurve();
     649        1982 :             break;
     650             : 
     651          46 :         case wkbCurvePolygon:
     652          92 :             poGeom = new (std::nothrow) OGRCurvePolygon();
     653          46 :             break;
     654             : 
     655        1121 :         case wkbMultiCurve:
     656        2242 :             poGeom = new (std::nothrow) OGRMultiCurve();
     657        1121 :             break;
     658             : 
     659        1183 :         case wkbMultiSurface:
     660        2366 :             poGeom = new (std::nothrow) OGRMultiSurface();
     661        1183 :             break;
     662             : 
     663       14503 :         case wkbTriangle:
     664       29006 :             poGeom = new (std::nothrow) OGRTriangle();
     665       14503 :             break;
     666             : 
     667        7379 :         case wkbPolyhedralSurface:
     668       14758 :             poGeom = new (std::nothrow) OGRPolyhedralSurface();
     669        7379 :             break;
     670             : 
     671        6243 :         case wkbTIN:
     672       12486 :             poGeom = new (std::nothrow) OGRTriangulatedSurface();
     673        6243 :             break;
     674             : 
     675           1 :         case wkbUnknown:
     676           1 :             break;
     677             : 
     678           0 :         default:
     679           0 :             CPLAssert(false);
     680             :             break;
     681             :     }
     682      265943 :     if (poGeom)
     683             :     {
     684      265942 :         if (OGR_GT_HasZ(eGeometryType))
     685       64833 :             poGeom->set3D(true);
     686      265941 :         if (OGR_GT_HasM(eGeometryType))
     687       59828 :             poGeom->setMeasured(true);
     688             :     }
     689      265943 :     return poGeom;
     690             : }
     691             : 
     692             : /************************************************************************/
     693             : /*                        OGR_G_CreateGeometry()                        */
     694             : /************************************************************************/
     695             : /**
     696             :  * \brief Create an empty geometry of desired type.
     697             :  *
     698             :  * This is equivalent to allocating the desired geometry with new, but
     699             :  * the allocation is guaranteed to take place in the context of the
     700             :  * GDAL/OGR heap.
     701             :  *
     702             :  * This function is the same as the CPP method
     703             :  * OGRGeometryFactory::createGeometry.
     704             :  *
     705             :  * @param eGeometryType the type code of the geometry to be created.
     706             :  *
     707             :  * @return handle to the newly create geometry or NULL on failure. Should be
     708             :  *         freed with OGR_G_DestroyGeometry() after use.
     709             :  */
     710             : 
     711      165811 : OGRGeometryH OGR_G_CreateGeometry(OGRwkbGeometryType eGeometryType)
     712             : 
     713             : {
     714      165811 :     return OGRGeometry::ToHandle(
     715      165811 :         OGRGeometryFactory::createGeometry(eGeometryType));
     716             : }
     717             : 
     718             : /************************************************************************/
     719             : /*                          destroyGeometry()                           */
     720             : /************************************************************************/
     721             : 
     722             : /**
     723             :  * \brief Destroy geometry object.
     724             :  *
     725             :  * Equivalent to invoking delete on a geometry, but it guaranteed to take
     726             :  * place within the context of the GDAL/OGR heap.
     727             :  *
     728             :  * This method is the same as the C function OGR_G_DestroyGeometry().
     729             :  *
     730             :  * @param poGeom the geometry to deallocate.
     731             :  */
     732             : 
     733           2 : void OGRGeometryFactory::destroyGeometry(OGRGeometry *poGeom)
     734             : 
     735             : {
     736           2 :     delete poGeom;
     737           2 : }
     738             : 
     739             : /************************************************************************/
     740             : /*                        OGR_G_DestroyGeometry()                       */
     741             : /************************************************************************/
     742             : /**
     743             :  * \brief Destroy geometry object.
     744             :  *
     745             :  * Equivalent to invoking delete on a geometry, but it guaranteed to take
     746             :  * place within the context of the GDAL/OGR heap.
     747             :  *
     748             :  * This function is the same as the CPP method
     749             :  * OGRGeometryFactory::destroyGeometry.
     750             :  *
     751             :  * @param hGeom handle to the geometry to delete.
     752             :  */
     753             : 
     754      290798 : void OGR_G_DestroyGeometry(OGRGeometryH hGeom)
     755             : 
     756             : {
     757      290798 :     delete OGRGeometry::FromHandle(hGeom);
     758      290798 : }
     759             : 
     760             : /************************************************************************/
     761             : /*                           forceToPolygon()                           */
     762             : /************************************************************************/
     763             : 
     764             : /**
     765             :  * \brief Convert to polygon.
     766             :  *
     767             :  * Tries to force the provided geometry to be a polygon. This effects a change
     768             :  * on multipolygons.
     769             :  * Curve polygons or closed curves will be changed to polygons.
     770             :  * The passed in geometry is consumed and a new one returned (or
     771             :  * potentially the same one).
     772             :  *
     773             :  * Note: the resulting polygon may break the Simple Features rules for polygons,
     774             :  * for example when converting from a multi-part multipolygon.
     775             :  *
     776             :  * @param poGeom the input geometry - ownership is passed to the method.
     777             :  * @return new geometry, or nullptr in case of error
     778             :  */
     779             : 
     780         153 : OGRGeometry *OGRGeometryFactory::forceToPolygon(OGRGeometry *poGeom)
     781             : 
     782             : {
     783         153 :     if (poGeom == nullptr)
     784           0 :         return nullptr;
     785             : 
     786         153 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
     787             : 
     788         153 :     if (eGeomType == wkbCurvePolygon)
     789             :     {
     790          39 :         OGRCurvePolygon *poCurve = poGeom->toCurvePolygon();
     791             : 
     792          39 :         if (!poGeom->hasCurveGeometry(TRUE))
     793          14 :             return OGRSurface::CastToPolygon(poCurve);
     794             : 
     795          25 :         OGRPolygon *poPoly = poCurve->CurvePolyToPoly();
     796          25 :         delete poGeom;
     797          25 :         return poPoly;
     798             :     }
     799             : 
     800             :     // base polygon or triangle
     801         114 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolygon))
     802             :     {
     803           7 :         return OGRSurface::CastToPolygon(poGeom->toSurface());
     804             :     }
     805             : 
     806         107 :     if (OGR_GT_IsCurve(eGeomType))
     807             :     {
     808          60 :         OGRCurve *poCurve = poGeom->toCurve();
     809          60 :         if (poCurve->getNumPoints() >= 3 && poCurve->get_IsClosed())
     810             :         {
     811          40 :             OGRPolygon *poPolygon = new OGRPolygon();
     812          40 :             poPolygon->assignSpatialReference(poGeom->getSpatialReference());
     813             : 
     814          40 :             if (!poGeom->hasCurveGeometry(TRUE))
     815             :             {
     816          26 :                 poPolygon->addRingDirectly(OGRCurve::CastToLinearRing(poCurve));
     817             :             }
     818             :             else
     819             :             {
     820          14 :                 OGRLineString *poLS = poCurve->CurveToLine();
     821          14 :                 poPolygon->addRingDirectly(OGRCurve::CastToLinearRing(poLS));
     822          14 :                 delete poGeom;
     823             :             }
     824          40 :             return poPolygon;
     825             :         }
     826             :     }
     827             : 
     828          67 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
     829             :     {
     830           6 :         OGRPolyhedralSurface *poPS = poGeom->toPolyhedralSurface();
     831           6 :         if (poPS->getNumGeometries() == 1)
     832             :         {
     833           5 :             poGeom = OGRSurface::CastToPolygon(
     834           5 :                 poPS->getGeometryRef(0)->clone()->toSurface());
     835           5 :             delete poPS;
     836           5 :             return poGeom;
     837             :         }
     838             :     }
     839             : 
     840          62 :     if (eGeomType != wkbGeometryCollection && eGeomType != wkbMultiPolygon &&
     841             :         eGeomType != wkbMultiSurface)
     842          38 :         return poGeom;
     843             : 
     844             :     // Build an aggregated polygon from all the polygon rings in the container.
     845          24 :     OGRPolygon *poPolygon = new OGRPolygon();
     846          24 :     OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
     847          24 :     if (poGeom->hasCurveGeometry())
     848             :     {
     849             :         OGRGeometryCollection *poNewGC =
     850           5 :             poGC->getLinearGeometry()->toGeometryCollection();
     851           5 :         delete poGC;
     852           5 :         poGeom = poNewGC;
     853           5 :         poGC = poNewGC;
     854             :     }
     855             : 
     856          24 :     poPolygon->assignSpatialReference(poGeom->getSpatialReference());
     857             : 
     858          53 :     for (int iGeom = 0; iGeom < poGC->getNumGeometries(); iGeom++)
     859             :     {
     860          29 :         if (wkbFlatten(poGC->getGeometryRef(iGeom)->getGeometryType()) !=
     861             :             wkbPolygon)
     862          12 :             continue;
     863             : 
     864          17 :         OGRPolygon *poOldPoly = poGC->getGeometryRef(iGeom)->toPolygon();
     865             : 
     866          17 :         if (poOldPoly->getExteriorRing() == nullptr)
     867           3 :             continue;
     868             : 
     869          14 :         poPolygon->addRingDirectly(poOldPoly->stealExteriorRing());
     870             : 
     871          22 :         for (int iRing = 0; iRing < poOldPoly->getNumInteriorRings(); iRing++)
     872           8 :             poPolygon->addRingDirectly(poOldPoly->stealInteriorRing(iRing));
     873             :     }
     874             : 
     875          24 :     delete poGC;
     876             : 
     877          24 :     return poPolygon;
     878             : }
     879             : 
     880             : /************************************************************************/
     881             : /*                        OGR_G_ForceToPolygon()                        */
     882             : /************************************************************************/
     883             : 
     884             : /**
     885             :  * \brief Convert to polygon.
     886             :  *
     887             :  * This function is the same as the C++ method
     888             :  * OGRGeometryFactory::forceToPolygon().
     889             :  *
     890             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
     891             :  * @return the converted geometry (ownership to caller), or NULL in case of error
     892             :  *
     893             :  * @since GDAL/OGR 1.8.0
     894             :  */
     895             : 
     896          46 : OGRGeometryH OGR_G_ForceToPolygon(OGRGeometryH hGeom)
     897             : 
     898             : {
     899          46 :     return OGRGeometry::ToHandle(
     900          46 :         OGRGeometryFactory::forceToPolygon(OGRGeometry::FromHandle(hGeom)));
     901             : }
     902             : 
     903             : /************************************************************************/
     904             : /*                        forceToMultiPolygon()                         */
     905             : /************************************************************************/
     906             : 
     907             : /**
     908             :  * \brief Convert to multipolygon.
     909             :  *
     910             :  * Tries to force the provided geometry to be a multipolygon.  Currently
     911             :  * this just effects a change on polygons.  The passed in geometry is
     912             :  * consumed and a new one returned (or potentially the same one).
     913             :  *
     914             :  * @return new geometry, or nullptr in case of error
     915             :  */
     916             : 
     917        3768 : OGRGeometry *OGRGeometryFactory::forceToMultiPolygon(OGRGeometry *poGeom)
     918             : 
     919             : {
     920        3768 :     if (poGeom == nullptr)
     921           0 :         return nullptr;
     922             : 
     923        3768 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
     924             : 
     925             :     /* -------------------------------------------------------------------- */
     926             :     /*      If this is already a MultiPolygon, nothing to do                */
     927             :     /* -------------------------------------------------------------------- */
     928        3768 :     if (eGeomType == wkbMultiPolygon)
     929             :     {
     930          40 :         return poGeom;
     931             :     }
     932             : 
     933             :     /* -------------------------------------------------------------------- */
     934             :     /*      If this is already a MultiSurface with compatible content,      */
     935             :     /*      just cast                                                       */
     936             :     /* -------------------------------------------------------------------- */
     937        3728 :     if (eGeomType == wkbMultiSurface)
     938             :     {
     939          13 :         OGRMultiSurface *poMS = poGeom->toMultiSurface();
     940          13 :         if (!poMS->hasCurveGeometry(TRUE))
     941             :         {
     942           4 :             return OGRMultiSurface::CastToMultiPolygon(poMS);
     943             :         }
     944             :     }
     945             : 
     946             :     /* -------------------------------------------------------------------- */
     947             :     /*      Check for the case of a geometrycollection that can be          */
     948             :     /*      promoted to MultiPolygon.                                       */
     949             :     /* -------------------------------------------------------------------- */
     950        3724 :     if (eGeomType == wkbGeometryCollection || eGeomType == wkbMultiSurface)
     951             :     {
     952          77 :         bool bAllPoly = true;
     953          77 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
     954          77 :         if (poGeom->hasCurveGeometry())
     955             :         {
     956             :             OGRGeometryCollection *poNewGC =
     957          10 :                 poGC->getLinearGeometry()->toGeometryCollection();
     958          10 :             delete poGC;
     959          10 :             poGeom = poNewGC;
     960          10 :             poGC = poNewGC;
     961             :         }
     962             : 
     963          77 :         bool bCanConvertToMultiPoly = true;
     964         306 :         for (int iGeom = 0; iGeom < poGC->getNumGeometries(); iGeom++)
     965             :         {
     966             :             OGRwkbGeometryType eSubGeomType =
     967         229 :                 wkbFlatten(poGC->getGeometryRef(iGeom)->getGeometryType());
     968         229 :             if (eSubGeomType != wkbPolygon)
     969         172 :                 bAllPoly = false;
     970         229 :             if (eSubGeomType != wkbMultiPolygon && eSubGeomType != wkbPolygon &&
     971         134 :                 eSubGeomType != wkbPolyhedralSurface && eSubGeomType != wkbTIN)
     972             :             {
     973          16 :                 bCanConvertToMultiPoly = false;
     974             :             }
     975             :         }
     976             : 
     977          77 :         if (!bCanConvertToMultiPoly)
     978          12 :             return poGeom;
     979             : 
     980          65 :         OGRMultiPolygon *poMP = new OGRMultiPolygon();
     981          65 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
     982             : 
     983         276 :         while (poGC->getNumGeometries() > 0)
     984             :         {
     985         211 :             OGRGeometry *poSubGeom = poGC->getGeometryRef(0);
     986         211 :             poGC->removeGeometry(0, FALSE);
     987         211 :             if (bAllPoly)
     988             :             {
     989          55 :                 poMP->addGeometryDirectly(poSubGeom);
     990             :             }
     991             :             else
     992             :             {
     993         156 :                 poSubGeom = forceToMultiPolygon(poSubGeom);
     994         156 :                 OGRMultiPolygon *poSubMP = poSubGeom->toMultiPolygon();
     995         414 :                 while (poSubMP != nullptr && poSubMP->getNumGeometries() > 0)
     996             :                 {
     997         258 :                     poMP->addGeometryDirectly(poSubMP->getGeometryRef(0));
     998         258 :                     poSubMP->removeGeometry(0, FALSE);
     999             :                 }
    1000         156 :                 delete poSubMP;
    1001             :             }
    1002             :         }
    1003             : 
    1004          65 :         delete poGC;
    1005             : 
    1006          65 :         return poMP;
    1007             :     }
    1008             : 
    1009        3647 :     if (eGeomType == wkbCurvePolygon)
    1010             :     {
    1011           5 :         OGRPolygon *poPoly = poGeom->toCurvePolygon()->CurvePolyToPoly();
    1012           5 :         OGRMultiPolygon *poMP = new OGRMultiPolygon();
    1013           5 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1014           5 :         poMP->addGeometryDirectly(poPoly);
    1015           5 :         delete poGeom;
    1016           5 :         return poMP;
    1017             :     }
    1018             : 
    1019             :     /* -------------------------------------------------------------------- */
    1020             :     /*      If it is PolyhedralSurface or TIN, then pretend it is a         */
    1021             :     /*      multipolygon.                                                   */
    1022             :     /* -------------------------------------------------------------------- */
    1023        3642 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
    1024             :     {
    1025         992 :         return OGRPolyhedralSurface::CastToMultiPolygon(
    1026         992 :             poGeom->toPolyhedralSurface());
    1027             :     }
    1028             : 
    1029        2650 :     if (eGeomType == wkbTriangle)
    1030             :     {
    1031           2 :         return forceToMultiPolygon(forceToPolygon(poGeom));
    1032             :     }
    1033             : 
    1034             :     /* -------------------------------------------------------------------- */
    1035             :     /*      Eventually we should try to split the polygon into component    */
    1036             :     /*      island polygons.  But that is a lot of work and can be put off. */
    1037             :     /* -------------------------------------------------------------------- */
    1038        2648 :     if (eGeomType != wkbPolygon)
    1039          30 :         return poGeom;
    1040             : 
    1041        2618 :     OGRMultiPolygon *poMP = new OGRMultiPolygon();
    1042        2618 :     poMP->assignSpatialReference(poGeom->getSpatialReference());
    1043        2618 :     poMP->addGeometryDirectly(poGeom);
    1044             : 
    1045        2618 :     return poMP;
    1046             : }
    1047             : 
    1048             : /************************************************************************/
    1049             : /*                     OGR_G_ForceToMultiPolygon()                      */
    1050             : /************************************************************************/
    1051             : 
    1052             : /**
    1053             :  * \brief Convert to multipolygon.
    1054             :  *
    1055             :  * This function is the same as the C++ method
    1056             :  * OGRGeometryFactory::forceToMultiPolygon().
    1057             :  *
    1058             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1059             :  * @return the converted geometry (ownership to caller), or NULL in case of error
    1060             :  *
    1061             :  * @since GDAL/OGR 1.8.0
    1062             :  */
    1063             : 
    1064          47 : OGRGeometryH OGR_G_ForceToMultiPolygon(OGRGeometryH hGeom)
    1065             : 
    1066             : {
    1067          47 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceToMultiPolygon(
    1068          47 :         OGRGeometry::FromHandle(hGeom)));
    1069             : }
    1070             : 
    1071             : /************************************************************************/
    1072             : /*                        forceToMultiPoint()                           */
    1073             : /************************************************************************/
    1074             : 
    1075             : /**
    1076             :  * \brief Convert to multipoint.
    1077             :  *
    1078             :  * Tries to force the provided geometry to be a multipoint.  Currently
    1079             :  * this just effects a change on points or collection of points.
    1080             :  * The passed in geometry is
    1081             :  * consumed and a new one returned (or potentially the same one).
    1082             :  *
    1083             :  * @return new geometry.
    1084             :  */
    1085             : 
    1086          67 : OGRGeometry *OGRGeometryFactory::forceToMultiPoint(OGRGeometry *poGeom)
    1087             : 
    1088             : {
    1089          67 :     if (poGeom == nullptr)
    1090           0 :         return nullptr;
    1091             : 
    1092          67 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    1093             : 
    1094             :     /* -------------------------------------------------------------------- */
    1095             :     /*      If this is already a MultiPoint, nothing to do                  */
    1096             :     /* -------------------------------------------------------------------- */
    1097          67 :     if (eGeomType == wkbMultiPoint)
    1098             :     {
    1099           2 :         return poGeom;
    1100             :     }
    1101             : 
    1102             :     /* -------------------------------------------------------------------- */
    1103             :     /*      Check for the case of a geometrycollection that can be          */
    1104             :     /*      promoted to MultiPoint.                                         */
    1105             :     /* -------------------------------------------------------------------- */
    1106          65 :     if (eGeomType == wkbGeometryCollection)
    1107             :     {
    1108          14 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1109          18 :         for (const auto &poMember : poGC)
    1110             :         {
    1111          14 :             if (wkbFlatten(poMember->getGeometryType()) != wkbPoint)
    1112          10 :                 return poGeom;
    1113             :         }
    1114             : 
    1115           4 :         OGRMultiPoint *poMP = new OGRMultiPoint();
    1116           4 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1117             : 
    1118           8 :         while (poGC->getNumGeometries() > 0)
    1119             :         {
    1120           4 :             poMP->addGeometryDirectly(poGC->getGeometryRef(0));
    1121           4 :             poGC->removeGeometry(0, FALSE);
    1122             :         }
    1123             : 
    1124           4 :         delete poGC;
    1125             : 
    1126           4 :         return poMP;
    1127             :     }
    1128             : 
    1129          51 :     if (eGeomType != wkbPoint)
    1130          44 :         return poGeom;
    1131             : 
    1132           7 :     OGRMultiPoint *poMP = new OGRMultiPoint();
    1133           7 :     poMP->assignSpatialReference(poGeom->getSpatialReference());
    1134           7 :     poMP->addGeometryDirectly(poGeom);
    1135             : 
    1136           7 :     return poMP;
    1137             : }
    1138             : 
    1139             : /************************************************************************/
    1140             : /*                      OGR_G_ForceToMultiPoint()                       */
    1141             : /************************************************************************/
    1142             : 
    1143             : /**
    1144             :  * \brief Convert to multipoint.
    1145             :  *
    1146             :  * This function is the same as the C++ method
    1147             :  * OGRGeometryFactory::forceToMultiPoint().
    1148             :  *
    1149             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1150             :  * @return the converted geometry (ownership to caller).
    1151             :  *
    1152             :  * @since GDAL/OGR 1.8.0
    1153             :  */
    1154             : 
    1155          41 : OGRGeometryH OGR_G_ForceToMultiPoint(OGRGeometryH hGeom)
    1156             : 
    1157             : {
    1158          41 :     return OGRGeometry::ToHandle(
    1159          41 :         OGRGeometryFactory::forceToMultiPoint(OGRGeometry::FromHandle(hGeom)));
    1160             : }
    1161             : 
    1162             : /************************************************************************/
    1163             : /*                        forceToMultiLinestring()                      */
    1164             : /************************************************************************/
    1165             : 
    1166             : /**
    1167             :  * \brief Convert to multilinestring.
    1168             :  *
    1169             :  * Tries to force the provided geometry to be a multilinestring.
    1170             :  *
    1171             :  * - linestrings are placed in a multilinestring.
    1172             :  * - circularstrings and compoundcurves will be approximated and placed in a
    1173             :  * multilinestring.
    1174             :  * - geometry collections will be converted to multilinestring if they only
    1175             :  * contain linestrings.
    1176             :  * - polygons will be changed to a collection of linestrings (one per ring).
    1177             :  * - curvepolygons will be approximated and changed to a collection of
    1178             :  ( linestrings (one per ring).
    1179             :  *
    1180             :  * The passed in geometry is
    1181             :  * consumed and a new one returned (or potentially the same one).
    1182             :  *
    1183             :  * @return new geometry.
    1184             :  */
    1185             : 
    1186        2172 : OGRGeometry *OGRGeometryFactory::forceToMultiLineString(OGRGeometry *poGeom)
    1187             : 
    1188             : {
    1189        2172 :     if (poGeom == nullptr)
    1190           0 :         return nullptr;
    1191             : 
    1192        2172 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    1193             : 
    1194             :     /* -------------------------------------------------------------------- */
    1195             :     /*      If this is already a MultiLineString, nothing to do             */
    1196             :     /* -------------------------------------------------------------------- */
    1197        2172 :     if (eGeomType == wkbMultiLineString)
    1198             :     {
    1199           2 :         return poGeom;
    1200             :     }
    1201             : 
    1202             :     /* -------------------------------------------------------------------- */
    1203             :     /*      Check for the case of a geometrycollection that can be          */
    1204             :     /*      promoted to MultiLineString.                                    */
    1205             :     /* -------------------------------------------------------------------- */
    1206        2170 :     if (eGeomType == wkbGeometryCollection)
    1207             :     {
    1208          16 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1209          16 :         if (poGeom->hasCurveGeometry())
    1210             :         {
    1211             :             OGRGeometryCollection *poNewGC =
    1212           1 :                 poGC->getLinearGeometry()->toGeometryCollection();
    1213           1 :             delete poGC;
    1214           1 :             poGeom = poNewGC;
    1215           1 :             poGC = poNewGC;
    1216             :         }
    1217             : 
    1218          24 :         for (auto &&poMember : poGC)
    1219             :         {
    1220          18 :             if (wkbFlatten(poMember->getGeometryType()) != wkbLineString)
    1221             :             {
    1222          10 :                 return poGeom;
    1223             :             }
    1224             :         }
    1225             : 
    1226           6 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1227           6 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1228             : 
    1229          14 :         while (poGC->getNumGeometries() > 0)
    1230             :         {
    1231           8 :             poMP->addGeometryDirectly(poGC->getGeometryRef(0));
    1232           8 :             poGC->removeGeometry(0, FALSE);
    1233             :         }
    1234             : 
    1235           6 :         delete poGC;
    1236             : 
    1237           6 :         return poMP;
    1238             :     }
    1239             : 
    1240             :     /* -------------------------------------------------------------------- */
    1241             :     /*      Turn a linestring into a multilinestring.                       */
    1242             :     /* -------------------------------------------------------------------- */
    1243        2154 :     if (eGeomType == wkbLineString)
    1244             :     {
    1245        2064 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1246        2064 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1247        2064 :         poMP->addGeometryDirectly(poGeom);
    1248        2064 :         return poMP;
    1249             :     }
    1250             : 
    1251             :     /* -------------------------------------------------------------------- */
    1252             :     /*      Convert polygons into a multilinestring.                        */
    1253             :     /* -------------------------------------------------------------------- */
    1254          90 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbCurvePolygon))
    1255             :     {
    1256          28 :         OGRMultiLineString *poMLS = new OGRMultiLineString();
    1257          28 :         poMLS->assignSpatialReference(poGeom->getSpatialReference());
    1258             : 
    1259          57 :         const auto AddRingFromSrcPoly = [poMLS](const OGRPolygon *poPoly)
    1260             :         {
    1261          61 :             for (int iRing = 0; iRing < poPoly->getNumInteriorRings() + 1;
    1262             :                  iRing++)
    1263             :             {
    1264             :                 const OGRLineString *poLR;
    1265             : 
    1266          35 :                 if (iRing == 0)
    1267             :                 {
    1268          28 :                     poLR = poPoly->getExteriorRing();
    1269          28 :                     if (poLR == nullptr)
    1270           2 :                         break;
    1271             :                 }
    1272             :                 else
    1273           7 :                     poLR = poPoly->getInteriorRing(iRing - 1);
    1274             : 
    1275          33 :                 if (poLR == nullptr || poLR->getNumPoints() == 0)
    1276           4 :                     continue;
    1277             : 
    1278          29 :                 auto poNewLS = new OGRLineString();
    1279          29 :                 poNewLS->addSubLineString(poLR);
    1280          29 :                 poMLS->addGeometryDirectly(poNewLS);
    1281             :             }
    1282          28 :         };
    1283             : 
    1284          28 :         if (OGR_GT_IsSubClassOf(eGeomType, wkbPolygon))
    1285             :         {
    1286          24 :             AddRingFromSrcPoly(poGeom->toPolygon());
    1287             :         }
    1288             :         else
    1289             :         {
    1290             :             auto poTmpPoly = std::unique_ptr<OGRPolygon>(
    1291           8 :                 poGeom->toCurvePolygon()->CurvePolyToPoly());
    1292           4 :             AddRingFromSrcPoly(poTmpPoly.get());
    1293             :         }
    1294             : 
    1295          28 :         delete poGeom;
    1296             : 
    1297          28 :         return poMLS;
    1298             :     }
    1299             : 
    1300             :     /* -------------------------------------------------------------------- */
    1301             :     /*      If it is PolyhedralSurface or TIN, then pretend it is a         */
    1302             :     /*      multipolygon.                                                   */
    1303             :     /* -------------------------------------------------------------------- */
    1304          62 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
    1305             :     {
    1306           0 :         poGeom = CPLAssertNotNull(forceToMultiPolygon(poGeom));
    1307           0 :         eGeomType = wkbMultiPolygon;
    1308             :     }
    1309             : 
    1310             :     /* -------------------------------------------------------------------- */
    1311             :     /*      Convert multi-polygons into a multilinestring.                  */
    1312             :     /* -------------------------------------------------------------------- */
    1313          62 :     if (eGeomType == wkbMultiPolygon || eGeomType == wkbMultiSurface)
    1314             :     {
    1315           9 :         OGRMultiLineString *poMLS = new OGRMultiLineString();
    1316           9 :         poMLS->assignSpatialReference(poGeom->getSpatialReference());
    1317             : 
    1318          22 :         const auto AddRingFromSrcMP = [poMLS](const OGRMultiPolygon *poSrcMP)
    1319             :         {
    1320          21 :             for (auto &&poPoly : poSrcMP)
    1321             :             {
    1322          27 :                 for (auto &&poLR : poPoly)
    1323             :                 {
    1324          15 :                     if (poLR->IsEmpty())
    1325           2 :                         continue;
    1326             : 
    1327          13 :                     OGRLineString *poNewLS = new OGRLineString();
    1328          13 :                     poNewLS->addSubLineString(poLR);
    1329          13 :                     poMLS->addGeometryDirectly(poNewLS);
    1330             :                 }
    1331             :             }
    1332           9 :         };
    1333             : 
    1334           9 :         if (eGeomType == wkbMultiPolygon)
    1335             :         {
    1336           6 :             AddRingFromSrcMP(poGeom->toMultiPolygon());
    1337             :         }
    1338             :         else
    1339             :         {
    1340             :             auto poTmpMPoly = std::unique_ptr<OGRMultiPolygon>(
    1341           6 :                 poGeom->getLinearGeometry()->toMultiPolygon());
    1342           3 :             AddRingFromSrcMP(poTmpMPoly.get());
    1343             :         }
    1344             : 
    1345           9 :         delete poGeom;
    1346           9 :         return poMLS;
    1347             :     }
    1348             : 
    1349             :     /* -------------------------------------------------------------------- */
    1350             :     /*      If it is a curve line, approximate it and wrap in a multilinestring
    1351             :      */
    1352             :     /* -------------------------------------------------------------------- */
    1353          53 :     if (eGeomType == wkbCircularString || eGeomType == wkbCompoundCurve)
    1354             :     {
    1355          20 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1356          20 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1357          20 :         poMP->addGeometryDirectly(poGeom->toCurve()->CurveToLine());
    1358          20 :         delete poGeom;
    1359          20 :         return poMP;
    1360             :     }
    1361             : 
    1362             :     /* -------------------------------------------------------------------- */
    1363             :     /*      If this is already a MultiCurve with compatible content,        */
    1364             :     /*      just cast                                                       */
    1365             :     /* -------------------------------------------------------------------- */
    1366          46 :     if (eGeomType == wkbMultiCurve &&
    1367          13 :         !poGeom->toMultiCurve()->hasCurveGeometry(TRUE))
    1368             :     {
    1369           3 :         return OGRMultiCurve::CastToMultiLineString(poGeom->toMultiCurve());
    1370             :     }
    1371             : 
    1372             :     /* -------------------------------------------------------------------- */
    1373             :     /*      If it is a multicurve, call getLinearGeometry()                */
    1374             :     /* -------------------------------------------------------------------- */
    1375          30 :     if (eGeomType == wkbMultiCurve)
    1376             :     {
    1377          10 :         OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
    1378          10 :         CPLAssert(wkbFlatten(poNewGeom->getGeometryType()) ==
    1379             :                   wkbMultiLineString);
    1380          10 :         delete poGeom;
    1381          10 :         return poNewGeom->toMultiLineString();
    1382             :     }
    1383             : 
    1384          20 :     return poGeom;
    1385             : }
    1386             : 
    1387             : /************************************************************************/
    1388             : /*                    OGR_G_ForceToMultiLineString()                    */
    1389             : /************************************************************************/
    1390             : 
    1391             : /**
    1392             :  * \brief Convert to multilinestring.
    1393             :  *
    1394             :  * This function is the same as the C++ method
    1395             :  * OGRGeometryFactory::forceToMultiLineString().
    1396             :  *
    1397             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1398             :  * @return the converted geometry (ownership to caller).
    1399             :  *
    1400             :  * @since GDAL/OGR 1.8.0
    1401             :  */
    1402             : 
    1403          50 : OGRGeometryH OGR_G_ForceToMultiLineString(OGRGeometryH hGeom)
    1404             : 
    1405             : {
    1406          50 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceToMultiLineString(
    1407          50 :         OGRGeometry::FromHandle(hGeom)));
    1408             : }
    1409             : 
    1410             : /************************************************************************/
    1411             : /*                      removeLowerDimensionSubGeoms()                  */
    1412             : /************************************************************************/
    1413             : 
    1414             : /** \brief Remove sub-geometries from a geometry collection that do not have
    1415             :  *         the maximum topological dimensionality of the collection.
    1416             :  *
    1417             :  * This is typically to be used as a cleanup phase after running
    1418             :  * OGRGeometry::MakeValid()
    1419             :  *
    1420             :  * For example, MakeValid() on a polygon can return a geometry collection of
    1421             :  * polygons and linestrings. Calling this method will return either a polygon
    1422             :  * or multipolygon by dropping those linestrings.
    1423             :  *
    1424             :  * On a non-geometry collection, this will return a clone of the passed
    1425             :  * geometry.
    1426             :  *
    1427             :  * @param poGeom input geometry
    1428             :  * @return a new geometry.
    1429             :  *
    1430             :  * @since GDAL 3.1.0
    1431             :  */
    1432             : OGRGeometry *
    1433          33 : OGRGeometryFactory::removeLowerDimensionSubGeoms(const OGRGeometry *poGeom)
    1434             : {
    1435          33 :     if (poGeom == nullptr)
    1436           0 :         return nullptr;
    1437          48 :     if (wkbFlatten(poGeom->getGeometryType()) != wkbGeometryCollection ||
    1438          15 :         poGeom->IsEmpty())
    1439             :     {
    1440          19 :         return poGeom->clone();
    1441             :     }
    1442          14 :     const OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1443          14 :     int nMaxDim = 0;
    1444          14 :     OGRBoolean bHasCurve = FALSE;
    1445          39 :     for (const auto poSubGeom : *poGC)
    1446             :     {
    1447          25 :         nMaxDim = std::max(nMaxDim, poSubGeom->getDimension());
    1448          25 :         bHasCurve |= poSubGeom->hasCurveGeometry();
    1449             :     }
    1450          14 :     int nCountAtMaxDim = 0;
    1451          14 :     const OGRGeometry *poGeomAtMaxDim = nullptr;
    1452          39 :     for (const auto poSubGeom : *poGC)
    1453             :     {
    1454          25 :         if (poSubGeom->getDimension() == nMaxDim)
    1455             :         {
    1456          19 :             poGeomAtMaxDim = poSubGeom;
    1457          19 :             nCountAtMaxDim++;
    1458             :         }
    1459             :     }
    1460          14 :     if (nCountAtMaxDim == 1 && poGeomAtMaxDim != nullptr)
    1461             :     {
    1462           9 :         return poGeomAtMaxDim->clone();
    1463             :     }
    1464             :     OGRGeometryCollection *poRet =
    1465           5 :         (nMaxDim == 0)
    1466          10 :             ? static_cast<OGRGeometryCollection *>(new OGRMultiPoint())
    1467           5 :         : (nMaxDim == 1)
    1468          10 :             ? (!bHasCurve
    1469           4 :                    ? static_cast<OGRGeometryCollection *>(
    1470           1 :                          new OGRMultiLineString())
    1471           1 :                    : static_cast<OGRGeometryCollection *>(new OGRMultiCurve()))
    1472           3 :         : (nMaxDim == 2 && !bHasCurve)
    1473           6 :             ? static_cast<OGRGeometryCollection *>(new OGRMultiPolygon())
    1474           1 :             : static_cast<OGRGeometryCollection *>(new OGRMultiSurface());
    1475          15 :     for (const auto poSubGeom : *poGC)
    1476             :     {
    1477          10 :         if (poSubGeom->getDimension() == nMaxDim)
    1478             :         {
    1479          10 :             if (OGR_GT_IsSubClassOf(poSubGeom->getGeometryType(),
    1480          10 :                                     wkbGeometryCollection))
    1481             :             {
    1482             :                 const OGRGeometryCollection *poSubGeomAsGC =
    1483           1 :                     poSubGeom->toGeometryCollection();
    1484           2 :                 for (const auto poSubSubGeom : *poSubGeomAsGC)
    1485             :                 {
    1486           1 :                     if (poSubSubGeom->getDimension() == nMaxDim)
    1487             :                     {
    1488           1 :                         poRet->addGeometryDirectly(poSubSubGeom->clone());
    1489             :                     }
    1490             :                 }
    1491             :             }
    1492             :             else
    1493             :             {
    1494           9 :                 poRet->addGeometryDirectly(poSubGeom->clone());
    1495             :             }
    1496             :         }
    1497             :     }
    1498           5 :     return poRet;
    1499             : }
    1500             : 
    1501             : /************************************************************************/
    1502             : /*                  OGR_G_RemoveLowerDimensionSubGeoms()                */
    1503             : /************************************************************************/
    1504             : 
    1505             : /** \brief Remove sub-geometries from a geometry collection that do not have
    1506             :  *         the maximum topological dimensionality of the collection.
    1507             :  *
    1508             :  * This function is the same as the C++ method
    1509             :  * OGRGeometryFactory::removeLowerDimensionSubGeoms().
    1510             :  *
    1511             :  * @param hGeom handle to the geometry to convert
    1512             :  * @return a new geometry.
    1513             :  *
    1514             :  * @since GDAL 3.1.0
    1515             :  */
    1516             : 
    1517          18 : OGRGeometryH OGR_G_RemoveLowerDimensionSubGeoms(const OGRGeometryH hGeom)
    1518             : 
    1519             : {
    1520          18 :     return OGRGeometry::ToHandle(
    1521             :         OGRGeometryFactory::removeLowerDimensionSubGeoms(
    1522          36 :             OGRGeometry::FromHandle(hGeom)));
    1523             : }
    1524             : 
    1525             : /************************************************************************/
    1526             : /*                          organizePolygons()                          */
    1527             : /************************************************************************/
    1528             : 
    1529       85430 : struct sPolyExtended
    1530             : {
    1531             :     CPL_DISALLOW_COPY_ASSIGN(sPolyExtended)
    1532       60305 :     sPolyExtended() = default;
    1533      112147 :     sPolyExtended(sPolyExtended &&) = default;
    1534             :     sPolyExtended &operator=(sPolyExtended &&) = default;
    1535             : 
    1536             :     OGRCurvePolygon *poPolygon = nullptr;
    1537             :     OGREnvelope sEnvelope{};
    1538             :     OGRPoint sPoint{};
    1539             :     int nInitialIndex = 0;
    1540             :     OGRCurvePolygon *poEnclosingPolygon = nullptr;
    1541             :     double dfArea = 0.0;
    1542             :     bool bIsTopLevel = false;
    1543             :     bool bIsCW = false;
    1544             :     bool bIsPolygon = false;
    1545             : 
    1546        1244 :     inline const OGRLinearRing *getExteriorLinearRing() const
    1547             :     {
    1548        1244 :         return poPolygon->getExteriorRingCurve()->toLinearRing();
    1549             :     }
    1550             : 
    1551       90751 :     static void GetBoundsFromPolyEx(const void *hFeature, CPLRectObj *pBounds)
    1552             :     {
    1553       90751 :         const auto *poPolyEx = static_cast<const sPolyExtended *>(hFeature);
    1554       90751 :         pBounds->minx = poPolyEx->sEnvelope.MinX;
    1555       90751 :         pBounds->miny = poPolyEx->sEnvelope.MinY;
    1556       90751 :         pBounds->maxx = poPolyEx->sEnvelope.MaxX;
    1557       90751 :         pBounds->maxy = poPolyEx->sEnvelope.MaxY;
    1558       90751 :     }
    1559             : 
    1560             :     // recent libc++ std::sort() involve unsigned integer overflow in some
    1561             :     // situation
    1562             :     CPL_NOSANITIZE_UNSIGNED_INT_OVERFLOW
    1563        1332 :     static void SortByIncreasingEra(const sPolyExtended **pStart,
    1564             :                                     const sPolyExtended **pEnd)
    1565             :     {
    1566        1332 :         std::sort(pStart, pEnd,
    1567         768 :                   [](const sPolyExtended *psPoly1, const sPolyExtended *psPoly2)
    1568         768 :                   { return psPoly1->dfArea < psPoly2->dfArea; });
    1569        1332 :     }
    1570             : };
    1571             : 
    1572        5038 : static bool OGRGeometryFactoryCompareAreaDescending(const sPolyExtended &sPoly1,
    1573             :                                                     const sPolyExtended &sPoly2)
    1574             : {
    1575        5038 :     return sPoly1.dfArea > sPoly2.dfArea;
    1576             : }
    1577             : 
    1578      518849 : static bool OGRGeometryFactoryCompareByIndex(const sPolyExtended &sPoly1,
    1579             :                                              const sPolyExtended &sPoly2)
    1580             : {
    1581      518849 :     return sPoly1.nInitialIndex < sPoly2.nInitialIndex;
    1582             : }
    1583             : 
    1584             : constexpr int N_CRITICAL_PART_NUMBER = 100;
    1585             : 
    1586             : enum OrganizePolygonMethod
    1587             : {
    1588             :     METHOD_NORMAL,
    1589             :     METHOD_SKIP,
    1590             :     METHOD_ONLY_CCW,
    1591             :     METHOD_CCW_INNER_JUST_AFTER_CW_OUTER
    1592             : };
    1593             : 
    1594             : /**
    1595             :  * \brief Organize polygons based on geometries.
    1596             :  *
    1597             :  * Analyse a set of rings (passed as simple polygons), and based on a
    1598             :  * geometric analysis convert them into a polygon with inner rings,
    1599             :  * (or a MultiPolygon if dealing with more than one polygon) that follow the
    1600             :  * OGC Simple Feature specification.
    1601             :  *
    1602             :  * All the input geometries must be OGRPolygon/OGRCurvePolygon with only a valid
    1603             :  * exterior ring (at least 4 points) and no interior rings.
    1604             :  *
    1605             :  * The passed in geometries become the responsibility of the method, but the
    1606             :  * papoPolygons "pointer array" remains owned by the caller.
    1607             :  *
    1608             :  * For faster computation, a polygon is considered to be inside
    1609             :  * another one if a single point of its external ring is included into the other
    1610             :  * one. (unless 'OGR_DEBUG_ORGANIZE_POLYGONS' configuration option is set to
    1611             :  * TRUE. In that case, a slower algorithm that tests exact topological
    1612             :  * relationships is used if GEOS is available.)
    1613             :  *
    1614             :  * In cases where a big number of polygons is passed to this function, the
    1615             :  * default processing may be really slow. You can skip the processing by adding
    1616             :  * METHOD=SKIP to the option list (the result of the function will be a
    1617             :  * multi-polygon with all polygons as toplevel polygons) or only make it analyze
    1618             :  * counterclockwise polygons by adding METHOD=ONLY_CCW to the option list if you
    1619             :  * can assume that the outline of holes is counterclockwise defined (this is the
    1620             :  * convention for example in shapefiles, Personal Geodatabases or File
    1621             :  * Geodatabases).
    1622             :  *
    1623             :  * For FileGDB, in most cases, but not always, a faster method than ONLY_CCW can
    1624             :  * be used. It is CCW_INNER_JUST_AFTER_CW_OUTER. When using it, inner rings are
    1625             :  * assumed to be counterclockwise oriented, and following immediately the outer
    1626             :  * ring (clockwise oriented) that they belong to. If that assumption is not met,
    1627             :  * an inner ring could be attached to the wrong outer ring, so this method must
    1628             :  * be used with care.
    1629             :  *
    1630             :  * If the OGR_ORGANIZE_POLYGONS configuration option is defined, its value will
    1631             :  * override the value of the METHOD option of papszOptions (useful to modify the
    1632             :  * behavior of the shapefile driver)
    1633             :  *
    1634             :  * @param papoPolygons array of geometry pointers - should all be OGRPolygons
    1635             :  * or OGRCurvePolygons. Ownership of the geometries is passed, but not of the
    1636             :  * array itself.
    1637             :  * @param nPolygonCount number of items in papoPolygons
    1638             :  * @param pbIsValidGeometry value may be set to FALSE if an invalid result is
    1639             :  * detected. Validity checks vary according to the method used and are are limited
    1640             :  * to what is needed to link inner rings to outer rings, so a result of TRUE
    1641             :  * does not mean that OGRGeometry::IsValid() returns TRUE.
    1642             :  * @param papszOptions a list of strings for passing options
    1643             :  *
    1644             :  * @return a single resulting geometry (either OGRPolygon, OGRCurvePolygon,
    1645             :  * OGRMultiPolygon, OGRMultiSurface or OGRGeometryCollection). Returns a
    1646             :  * POLYGON EMPTY in the case of nPolygonCount being 0.
    1647             :  */
    1648             : 
    1649       48629 : OGRGeometry *OGRGeometryFactory::organizePolygons(OGRGeometry **papoPolygons,
    1650             :                                                   int nPolygonCount,
    1651             :                                                   int *pbIsValidGeometry,
    1652             :                                                   const char **papszOptions)
    1653             : {
    1654       48629 :     if (nPolygonCount == 0)
    1655             :     {
    1656           4 :         if (pbIsValidGeometry)
    1657           0 :             *pbIsValidGeometry = TRUE;
    1658             : 
    1659           4 :         return new OGRPolygon();
    1660             :     }
    1661             : 
    1662       48625 :     OGRGeometry *geom = nullptr;
    1663       48625 :     OrganizePolygonMethod method = METHOD_NORMAL;
    1664       48625 :     bool bHasCurves = false;
    1665             : 
    1666             :     /* -------------------------------------------------------------------- */
    1667             :     /*      Trivial case of a single polygon.                               */
    1668             :     /* -------------------------------------------------------------------- */
    1669       48625 :     if (nPolygonCount == 1)
    1670             :     {
    1671             :         OGRwkbGeometryType eType =
    1672       33803 :             wkbFlatten(papoPolygons[0]->getGeometryType());
    1673             : 
    1674       33803 :         bool bIsValid = true;
    1675             : 
    1676       33803 :         if (eType != wkbPolygon && eType != wkbCurvePolygon)
    1677             :         {
    1678           3 :             CPLError(CE_Warning, CPLE_AppDefined,
    1679             :                      "organizePolygons() received a non-Polygon geometry.");
    1680           3 :             bIsValid = false;
    1681           3 :             delete papoPolygons[0];
    1682           3 :             geom = new OGRPolygon();
    1683             :         }
    1684             :         else
    1685             :         {
    1686       33800 :             geom = papoPolygons[0];
    1687             :         }
    1688             : 
    1689       33803 :         papoPolygons[0] = nullptr;
    1690             : 
    1691       33803 :         if (pbIsValidGeometry)
    1692       33424 :             *pbIsValidGeometry = bIsValid;
    1693             : 
    1694       33803 :         return geom;
    1695             :     }
    1696             : 
    1697       14822 :     bool bUseFastVersion = true;
    1698       14822 :     if (CPLTestBool(CPLGetConfigOption("OGR_DEBUG_ORGANIZE_POLYGONS", "NO")))
    1699             :     {
    1700             :         /* ------------------------------------------------------------------ */
    1701             :         /*      A wee bit of a warning.                                       */
    1702             :         /* ------------------------------------------------------------------ */
    1703             :         static int firstTime = 1;
    1704             :         // cppcheck-suppress knownConditionTrueFalse
    1705           0 :         if (!haveGEOS() && firstTime)
    1706             :         {
    1707           0 :             CPLDebug(
    1708             :                 "OGR",
    1709             :                 "In OGR_DEBUG_ORGANIZE_POLYGONS mode, GDAL should be built "
    1710             :                 "with GEOS support enabled in order "
    1711             :                 "OGRGeometryFactory::organizePolygons to provide reliable "
    1712             :                 "results on complex polygons.");
    1713           0 :             firstTime = 0;
    1714             :         }
    1715             :         // cppcheck-suppress knownConditionTrueFalse
    1716           0 :         bUseFastVersion = !haveGEOS();
    1717             :     }
    1718             : 
    1719             :     /* -------------------------------------------------------------------- */
    1720             :     /*      Setup per polygon envelope and area information.                */
    1721             :     /* -------------------------------------------------------------------- */
    1722       29644 :     std::vector<sPolyExtended> asPolyEx;
    1723       14822 :     asPolyEx.reserve(nPolygonCount);
    1724             : 
    1725       14822 :     bool bValidTopology = true;
    1726       14822 :     bool bMixedUpGeometries = false;
    1727       14822 :     bool bFoundCCW = false;
    1728             : 
    1729       14822 :     const char *pszMethodValue = CSLFetchNameValue(papszOptions, "METHOD");
    1730             :     const char *pszMethodValueOption =
    1731       14822 :         CPLGetConfigOption("OGR_ORGANIZE_POLYGONS", nullptr);
    1732       14822 :     if (pszMethodValueOption != nullptr && pszMethodValueOption[0] != '\0')
    1733       13944 :         pszMethodValue = pszMethodValueOption;
    1734             : 
    1735       14822 :     if (pszMethodValue != nullptr)
    1736             :     {
    1737       14322 :         if (EQUAL(pszMethodValue, "SKIP"))
    1738             :         {
    1739       13948 :             method = METHOD_SKIP;
    1740       13948 :             bMixedUpGeometries = true;
    1741             :         }
    1742         374 :         else if (EQUAL(pszMethodValue, "ONLY_CCW"))
    1743             :         {
    1744         302 :             method = METHOD_ONLY_CCW;
    1745             :         }
    1746          72 :         else if (EQUAL(pszMethodValue, "CCW_INNER_JUST_AFTER_CW_OUTER"))
    1747             :         {
    1748           0 :             method = METHOD_CCW_INNER_JUST_AFTER_CW_OUTER;
    1749             :         }
    1750          72 :         else if (!EQUAL(pszMethodValue, "DEFAULT"))
    1751             :         {
    1752           0 :             CPLError(CE_Warning, CPLE_AppDefined,
    1753             :                      "Unrecognized value for METHOD option : %s",
    1754             :                      pszMethodValue);
    1755             :         }
    1756             :     }
    1757             : 
    1758       14822 :     int nCountCWPolygon = 0;
    1759       14822 :     int indexOfCWPolygon = -1;
    1760       14822 :     OGREnvelope sGlobalEnvelope;
    1761             : 
    1762       75130 :     for (int i = 0; i < nPolygonCount; i++)
    1763             :     {
    1764             :         const OGRwkbGeometryType eType =
    1765       60308 :             wkbFlatten(papoPolygons[i]->getGeometryType());
    1766             : 
    1767       60308 :         if (eType != wkbPolygon && eType != wkbCurvePolygon)
    1768             :         {
    1769             :             // Ignore any points or lines that find their way in here.
    1770           3 :             CPLError(CE_Warning, CPLE_AppDefined,
    1771             :                      "organizePolygons() received a non-Polygon geometry.");
    1772           3 :             delete papoPolygons[i];
    1773           3 :             continue;
    1774             :         }
    1775             : 
    1776      120610 :         sPolyExtended sPolyEx;
    1777             : 
    1778       60305 :         sPolyEx.nInitialIndex = i;
    1779       60305 :         sPolyEx.poPolygon = papoPolygons[i]->toCurvePolygon();
    1780             : 
    1781       60305 :         papoPolygons[i]->getEnvelope(&sPolyEx.sEnvelope);
    1782       60305 :         sGlobalEnvelope.Merge(sPolyEx.sEnvelope);
    1783             : 
    1784       60305 :         if (eType == wkbCurvePolygon)
    1785          33 :             bHasCurves = true;
    1786       60305 :         if (!sPolyEx.poPolygon->IsEmpty() &&
    1787      120610 :             sPolyEx.poPolygon->getNumInteriorRings() == 0 &&
    1788       60305 :             sPolyEx.poPolygon->getExteriorRingCurve()->getNumPoints() >= 4)
    1789             :         {
    1790       60303 :             if (method != METHOD_CCW_INNER_JUST_AFTER_CW_OUTER)
    1791       60303 :                 sPolyEx.dfArea = sPolyEx.poPolygon->get_Area();
    1792       60303 :             auto *poExteriorRing = sPolyEx.poPolygon->getExteriorRingCurve();
    1793       60303 :             poExteriorRing->StartPoint(&sPolyEx.sPoint);
    1794       60303 :             if (eType == wkbPolygon)
    1795             :             {
    1796       60270 :                 sPolyEx.bIsCW =
    1797       60270 :                     CPL_TO_BOOL(poExteriorRing->toLinearRing()->isClockwise());
    1798       60270 :                 sPolyEx.bIsPolygon = true;
    1799             :             }
    1800             :             else
    1801             :             {
    1802          33 :                 OGRLineString *poLS = poExteriorRing->CurveToLine();
    1803          66 :                 OGRLinearRing oLR;
    1804          33 :                 oLR.addSubLineString(poLS);
    1805          33 :                 sPolyEx.bIsCW = CPL_TO_BOOL(oLR.isClockwise());
    1806          33 :                 sPolyEx.bIsPolygon = false;
    1807          33 :                 delete poLS;
    1808             :             }
    1809       60303 :             if (sPolyEx.bIsCW)
    1810             :             {
    1811       17195 :                 indexOfCWPolygon = i;
    1812       17195 :                 nCountCWPolygon++;
    1813             :             }
    1814       60303 :             if (!bFoundCCW)
    1815       29668 :                 bFoundCCW = !(sPolyEx.bIsCW);
    1816             :         }
    1817             :         else
    1818             :         {
    1819           2 :             if (!bMixedUpGeometries)
    1820             :             {
    1821           0 :                 CPLError(CE_Warning, CPLE_AppDefined,
    1822             :                          "organizePolygons() received an unexpected geometry.  "
    1823             :                          "Either a polygon with interior rings, or a polygon "
    1824             :                          "with less than 4 points, or a non-Polygon geometry.  "
    1825             :                          "Return arguments as a collection.");
    1826           0 :                 bMixedUpGeometries = true;
    1827             :             }
    1828             :         }
    1829             : 
    1830       60305 :         asPolyEx.push_back(std::move(sPolyEx));
    1831             :     }
    1832             : 
    1833             :     // If we are in ONLY_CCW mode and that we have found that there is only one
    1834             :     // outer ring, then it is pretty easy : we can assume that all other rings
    1835             :     // are inside.
    1836       14822 :     if ((method == METHOD_ONLY_CCW ||
    1837         302 :          method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER) &&
    1838         115 :         nCountCWPolygon == 1 && bUseFastVersion)
    1839             :     {
    1840         115 :         OGRCurvePolygon *poCP = asPolyEx[indexOfCWPolygon].poPolygon;
    1841         391 :         for (int i = 0; i < static_cast<int>(asPolyEx.size()); i++)
    1842             :         {
    1843         276 :             if (i != indexOfCWPolygon)
    1844             :             {
    1845         161 :                 poCP->addRingDirectly(
    1846         161 :                     asPolyEx[i].poPolygon->stealExteriorRingCurve());
    1847         161 :                 delete asPolyEx[i].poPolygon;
    1848             :             }
    1849             :         }
    1850             : 
    1851         115 :         if (pbIsValidGeometry)
    1852         113 :             *pbIsValidGeometry = TRUE;
    1853         115 :         return poCP;
    1854             :     }
    1855             : 
    1856       14707 :     if (method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER && asPolyEx[0].bIsCW)
    1857             :     {
    1858             :         // Inner rings are CCW oriented and follow immediately the outer
    1859             :         // ring (that is CW oriented) in which they are included.
    1860           0 :         OGRMultiSurface *poMulti = nullptr;
    1861           0 :         OGRCurvePolygon *poCur = asPolyEx[0].poPolygon;
    1862           0 :         OGRGeometry *poRet = poCur;
    1863             :         // We have already checked that the first ring is CW.
    1864           0 :         OGREnvelope *psEnvelope = &(asPolyEx[0].sEnvelope);
    1865           0 :         for (std::size_t i = 1; i < asPolyEx.size(); i++)
    1866             :         {
    1867           0 :             if (asPolyEx[i].bIsCW)
    1868             :             {
    1869           0 :                 if (poMulti == nullptr)
    1870             :                 {
    1871           0 :                     if (bHasCurves)
    1872           0 :                         poMulti = new OGRMultiSurface();
    1873             :                     else
    1874           0 :                         poMulti = new OGRMultiPolygon();
    1875           0 :                     poRet = poMulti;
    1876           0 :                     poMulti->addGeometryDirectly(poCur);
    1877             :                 }
    1878           0 :                 poCur = asPolyEx[i].poPolygon;
    1879           0 :                 poMulti->addGeometryDirectly(poCur);
    1880           0 :                 psEnvelope = &(asPolyEx[i].sEnvelope);
    1881             :             }
    1882             :             else
    1883             :             {
    1884           0 :                 poCur->addRingDirectly(
    1885           0 :                     asPolyEx[i].poPolygon->stealExteriorRingCurve());
    1886           0 :                 if (!(asPolyEx[i].sPoint.getX() >= psEnvelope->MinX &&
    1887           0 :                       asPolyEx[i].sPoint.getX() <= psEnvelope->MaxX &&
    1888           0 :                       asPolyEx[i].sPoint.getY() >= psEnvelope->MinY &&
    1889           0 :                       asPolyEx[i].sPoint.getY() <= psEnvelope->MaxY))
    1890             :                 {
    1891           0 :                     CPLError(CE_Warning, CPLE_AppDefined,
    1892             :                              "Part %d does not respect "
    1893             :                              "CCW_INNER_JUST_AFTER_CW_OUTER rule",
    1894             :                              static_cast<int>(i));
    1895             :                 }
    1896           0 :                 delete asPolyEx[i].poPolygon;
    1897             :             }
    1898             :         }
    1899             : 
    1900           0 :         if (pbIsValidGeometry)
    1901           0 :             *pbIsValidGeometry = TRUE;
    1902           0 :         return poRet;
    1903             :     }
    1904       14707 :     else if (method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER)
    1905             :     {
    1906           0 :         method = METHOD_ONLY_CCW;
    1907           0 :         for (std::size_t i = 0; i < asPolyEx.size(); i++)
    1908           0 :             asPolyEx[i].dfArea = asPolyEx[i].poPolygon->get_Area();
    1909             :     }
    1910             : 
    1911             :     // Emits a warning if the number of parts is sufficiently big to anticipate
    1912             :     // for very long computation time, and the user didn't specify an explicit
    1913             :     // method.
    1914       14707 :     if (nPolygonCount > N_CRITICAL_PART_NUMBER && method == METHOD_NORMAL &&
    1915             :         pszMethodValue == nullptr)
    1916             :     {
    1917             :         static int firstTime = 1;
    1918           0 :         if (firstTime)
    1919             :         {
    1920           0 :             if (bFoundCCW)
    1921             :             {
    1922           0 :                 CPLError(
    1923             :                     CE_Warning, CPLE_AppDefined,
    1924             :                     "organizePolygons() received a polygon with more than %d "
    1925             :                     "parts. The processing may be really slow.  "
    1926             :                     "You can skip the processing by setting METHOD=SKIP, "
    1927             :                     "or only make it analyze counter-clock wise parts by "
    1928             :                     "setting METHOD=ONLY_CCW if you can assume that the "
    1929             :                     "outline of holes is counter-clock wise defined",
    1930             :                     N_CRITICAL_PART_NUMBER);
    1931             :             }
    1932             :             else
    1933             :             {
    1934           0 :                 CPLError(
    1935             :                     CE_Warning, CPLE_AppDefined,
    1936             :                     "organizePolygons() received a polygon with more than %d "
    1937             :                     "parts.  The processing may be really slow.  "
    1938             :                     "You can skip the processing by setting METHOD=SKIP.",
    1939             :                     N_CRITICAL_PART_NUMBER);
    1940             :             }
    1941           0 :             firstTime = 0;
    1942             :         }
    1943             :     }
    1944             : 
    1945             :     /* This a nulti-step algorithm :
    1946             :        1) Sort polygons by descending areas
    1947             :        2) For each polygon of rank i, find its smallest enclosing polygon
    1948             :           among the polygons of rank [i-1 ... 0]. If there are no such polygon,
    1949             :           this is a top-level polygon. Otherwise, depending on if the enclosing
    1950             :           polygon is top-level or not, we can decide if we are top-level or not
    1951             :        3) Re-sort the polygons to retrieve their initial order (nicer for
    1952             :           some applications)
    1953             :        4) For each non top-level polygon (= inner ring), add it to its
    1954             :           outer ring
    1955             :        5) Add the top-level polygons to the multipolygon
    1956             : 
    1957             :        Complexity : O(nPolygonCount^2)
    1958             :     */
    1959             : 
    1960             :     /* Compute how each polygon relate to the other ones
    1961             :        To save a bit of computation we always begin the computation by a test
    1962             :        on the envelope. We also take into account the areas to avoid some
    1963             :        useless tests.  (A contains B implies envelop(A) contains envelop(B)
    1964             :        and area(A) > area(B)) In practice, we can hope that few full geometry
    1965             :        intersection of inclusion test is done:
    1966             :        * if the polygons are well separated geographically (a set of islands
    1967             :        for example), no full geometry intersection or inclusion test is done.
    1968             :        (the envelopes don't intersect each other)
    1969             : 
    1970             :        * if the polygons are 'lake inside an island inside a lake inside an
    1971             :        area' and that each polygon is much smaller than its enclosing one,
    1972             :        their bounding boxes are strictly contained into each other, and thus,
    1973             :        no full geometry intersection or inclusion test is done
    1974             :     */
    1975             : 
    1976       14707 :     if (!bMixedUpGeometries)
    1977             :     {
    1978             :         // STEP 1: Sort polygons by descending area.
    1979         759 :         std::sort(asPolyEx.begin(), asPolyEx.end(),
    1980             :                   OGRGeometryFactoryCompareAreaDescending);
    1981             :     }
    1982       14707 :     papoPolygons = nullptr;  // Just to use to avoid it afterwards.
    1983             : 
    1984             :     /* -------------------------------------------------------------------- */
    1985             :     /*      Build a quadtree of polygons that can be exterior rings.        */
    1986             :     /* -------------------------------------------------------------------- */
    1987             : 
    1988             :     CPLRectObj sRect;
    1989       14707 :     sRect.minx = sGlobalEnvelope.MinX;
    1990       14707 :     sRect.miny = sGlobalEnvelope.MinY;
    1991       14707 :     sRect.maxx = sGlobalEnvelope.MaxX;
    1992       14707 :     sRect.maxy = sGlobalEnvelope.MaxY;
    1993             :     std::unique_ptr<CPLQuadTree, decltype(&CPLQuadTreeDestroy)> poQuadTree(
    1994             :         CPLQuadTreeCreate(&sRect, sPolyExtended::GetBoundsFromPolyEx),
    1995       14707 :         CPLQuadTreeDestroy);
    1996       74736 :     for (auto &sPolyEx : asPolyEx)
    1997             :     {
    1998       60029 :         if (method == METHOD_ONLY_CCW && sPolyEx.bIsCW == false)
    1999             :         {
    2000             :             // In that mode, we are interested only in indexing clock-wise
    2001             :             // polygons, which are the exterior rings
    2002         262 :             continue;
    2003             :         }
    2004             : 
    2005       59767 :         CPLQuadTreeInsert(poQuadTree.get(), &sPolyEx);
    2006             :     }
    2007             : 
    2008             :     /* -------------------------------------------------------------------- */
    2009             :     /*      Compute relationships, if things seem well structured.          */
    2010             :     /* -------------------------------------------------------------------- */
    2011             : 
    2012             :     // The first (largest) polygon is necessarily top-level.
    2013       14707 :     asPolyEx[0].bIsTopLevel = true;
    2014       14707 :     asPolyEx[0].poEnclosingPolygon = nullptr;
    2015             : 
    2016       14707 :     int nCountTopLevel = 1;
    2017             : 
    2018             :     // STEP 2.
    2019       18786 :     for (int i = 1; !bMixedUpGeometries && bValidTopology &&
    2020        2419 :                     i < static_cast<int>(asPolyEx.size());
    2021             :          i++)
    2022             :     {
    2023        1660 :         auto &thisPoly = asPolyEx[i];
    2024             : 
    2025        1660 :         if (method == METHOD_ONLY_CCW && thisPoly.bIsCW)
    2026             :         {
    2027         328 :             nCountTopLevel++;
    2028         328 :             thisPoly.bIsTopLevel = true;
    2029         328 :             thisPoly.poEnclosingPolygon = nullptr;
    2030         328 :             continue;
    2031             :         }
    2032             : 
    2033             :         // Look for candidate rings that intersect the current ring
    2034             :         CPLRectObj aoi;
    2035        1332 :         aoi.minx = thisPoly.sEnvelope.MinX;
    2036        1332 :         aoi.miny = thisPoly.sEnvelope.MinY;
    2037        1332 :         aoi.maxx = thisPoly.sEnvelope.MaxX;
    2038        1332 :         aoi.maxy = thisPoly.sEnvelope.MaxY;
    2039        1332 :         int nCandidates = 0;
    2040             :         std::unique_ptr<const sPolyExtended *, decltype(&CPLFree)>
    2041             :             aphCandidateShells(
    2042             :                 const_cast<const sPolyExtended **>(
    2043        1332 :                     reinterpret_cast<sPolyExtended **>(CPLQuadTreeSearch(
    2044        1332 :                         poQuadTree.get(), &aoi, &nCandidates))),
    2045        3996 :                 CPLFree);
    2046             : 
    2047             :         // Sort candidate outer rings by increasing area
    2048        1332 :         sPolyExtended::SortByIncreasingEra(
    2049        1332 :             aphCandidateShells.get(), aphCandidateShells.get() + nCandidates);
    2050             : 
    2051        1332 :         int j = 0;
    2052        2519 :         for (; bValidTopology && j < nCandidates; j++)
    2053             :         {
    2054        2032 :             const auto &otherPoly = *(aphCandidateShells.get()[j]);
    2055             : 
    2056        2032 :             if (method == METHOD_ONLY_CCW && otherPoly.bIsCW == false)
    2057             :             {
    2058             :                 // In that mode, this which is CCW if we reach here can only be
    2059             :                 // included in a CW polygon.
    2060           0 :                 continue;
    2061             :             }
    2062        2032 :             if (otherPoly.dfArea < thisPoly.dfArea || &otherPoly == &thisPoly)
    2063             :             {
    2064        1129 :                 continue;
    2065             :             }
    2066             : 
    2067         903 :             bool thisInsideOther = false;
    2068         903 :             if (otherPoly.sEnvelope.Contains(thisPoly.sEnvelope))
    2069             :             {
    2070         851 :                 if (bUseFastVersion)
    2071             :                 {
    2072        1106 :                     if (method == METHOD_ONLY_CCW &&
    2073         255 :                         (&otherPoly) == (&asPolyEx[0]))
    2074             :                     {
    2075             :                         // We are testing if a CCW ring is in the biggest CW
    2076             :                         // ring. It *must* be inside as this is the last
    2077             :                         // candidate, otherwise the winding order rules is
    2078             :                         // broken.
    2079         237 :                         thisInsideOther = true;
    2080             :                     }
    2081        1228 :                     else if (thisPoly.bIsPolygon && otherPoly.bIsPolygon &&
    2082             :                              otherPoly.getExteriorLinearRing()
    2083         614 :                                  ->isPointOnRingBoundary(&thisPoly.sPoint,
    2084             :                                                          FALSE))
    2085             :                     {
    2086             :                         const OGRLinearRing *poLR_this =
    2087          16 :                             thisPoly.getExteriorLinearRing();
    2088             :                         const OGRLinearRing *poLR_other =
    2089          16 :                             otherPoly.getExteriorLinearRing();
    2090             : 
    2091             :                         // If the point of i is on the boundary of other, we will
    2092             :                         // iterate over the other points of this.
    2093          16 :                         const int nPoints = poLR_this->getNumPoints();
    2094          16 :                         int k = 1;  // Used after for.
    2095          32 :                         OGRPoint previousPoint = thisPoly.sPoint;
    2096          31 :                         for (; k < nPoints; k++)
    2097             :                         {
    2098          30 :                             OGRPoint point;
    2099          30 :                             poLR_this->getPoint(k, &point);
    2100          32 :                             if (point.getX() == previousPoint.getX() &&
    2101           2 :                                 point.getY() == previousPoint.getY())
    2102             :                             {
    2103           0 :                                 continue;
    2104             :                             }
    2105          30 :                             if (poLR_other->isPointOnRingBoundary(&point,
    2106          30 :                                                                   FALSE))
    2107             :                             {
    2108             :                                 // If it is on the boundary of other, iterate again.
    2109             :                             }
    2110          15 :                             else if (poLR_other->isPointInRing(&point, FALSE))
    2111             :                             {
    2112             :                                 // If then point is strictly included in other, then
    2113             :                                 // this is considered inside other.
    2114          13 :                                 thisInsideOther = true;
    2115          13 :                                 break;
    2116             :                             }
    2117             :                             else
    2118             :                             {
    2119             :                                 // If it is outside, then this cannot be inside other.
    2120           2 :                                 break;
    2121             :                             }
    2122          15 :                             previousPoint = std::move(point);
    2123             :                         }
    2124          16 :                         if (!thisInsideOther && k == nPoints && nPoints > 2)
    2125             :                         {
    2126             :                             // All points of this are on the boundary of other.
    2127             :                             // Take a point in the middle of a segment of this and
    2128             :                             // test it against other.
    2129           1 :                             poLR_this->getPoint(0, &previousPoint);
    2130           2 :                             for (k = 1; k < nPoints; k++)
    2131             :                             {
    2132           2 :                                 OGRPoint point;
    2133           2 :                                 poLR_this->getPoint(k, &point);
    2134           2 :                                 if (point.getX() == previousPoint.getX() &&
    2135           0 :                                     point.getY() == previousPoint.getY())
    2136             :                                 {
    2137           0 :                                     continue;
    2138             :                                 }
    2139           2 :                                 OGRPoint pointMiddle;
    2140           2 :                                 pointMiddle.setX(
    2141           2 :                                     (point.getX() + previousPoint.getX()) / 2);
    2142           2 :                                 pointMiddle.setY(
    2143           2 :                                     (point.getY() + previousPoint.getY()) / 2);
    2144           2 :                                 if (poLR_other->isPointOnRingBoundary(
    2145           2 :                                         &pointMiddle, FALSE))
    2146             :                                 {
    2147             :                                     // If it is on the boundary of other, iterate
    2148             :                                     // again.
    2149             :                                 }
    2150           1 :                                 else if (poLR_other->isPointInRing(&pointMiddle,
    2151           1 :                                                                    FALSE))
    2152             :                                 {
    2153             :                                     // If then point is strictly included in other,
    2154             :                                     // then this is considered inside other.
    2155           1 :                                     thisInsideOther = true;
    2156           1 :                                     break;
    2157             :                                 }
    2158             :                                 else
    2159             :                                 {
    2160             :                                     // If it is outside, then this cannot be inside
    2161             :                                     // other.
    2162           0 :                                     break;
    2163             :                                 }
    2164           1 :                                 previousPoint = std::move(point);
    2165             :                             }
    2166             :                         }
    2167             :                     }
    2168             :                     // Note that isPointInRing only test strict inclusion in the
    2169             :                     // ring.
    2170        1196 :                     else if (thisPoly.bIsPolygon && otherPoly.bIsPolygon &&
    2171        1196 :                              otherPoly.getExteriorLinearRing()->isPointInRing(
    2172         598 :                                  &thisPoly.sPoint, FALSE))
    2173             :                     {
    2174         594 :                         thisInsideOther = true;
    2175             :                     }
    2176             :                 }
    2177           0 :                 else if (otherPoly.poPolygon->Contains(thisPoly.poPolygon))
    2178             :                 {
    2179           0 :                     thisInsideOther = true;
    2180             :                 }
    2181             :             }
    2182             : 
    2183         903 :             if (thisInsideOther)
    2184             :             {
    2185         845 :                 if (otherPoly.bIsTopLevel)
    2186             :                 {
    2187             :                     // We are a lake.
    2188         844 :                     thisPoly.bIsTopLevel = false;
    2189         844 :                     thisPoly.poEnclosingPolygon = otherPoly.poPolygon;
    2190             :                 }
    2191             :                 else
    2192             :                 {
    2193             :                     // We are included in a something not toplevel (a lake),
    2194             :                     // so in OGCSF we are considered as toplevel too.
    2195           1 :                     nCountTopLevel++;
    2196           1 :                     thisPoly.bIsTopLevel = true;
    2197           1 :                     thisPoly.poEnclosingPolygon = nullptr;
    2198             :                 }
    2199         845 :                 break;
    2200             :             }
    2201             :             // Use Overlaps instead of Intersects to be more
    2202             :             // tolerant about touching polygons.
    2203          58 :             else if (bUseFastVersion ||
    2204           0 :                      !thisPoly.poPolygon->Overlaps(otherPoly.poPolygon))
    2205             :             {
    2206             :             }
    2207             :             else
    2208             :             {
    2209             :                 // Bad... The polygons are intersecting but no one is
    2210             :                 // contained inside the other one. This is a really broken
    2211             :                 // case. We just make a multipolygon with the whole set of
    2212             :                 // polygons.
    2213           0 :                 bValidTopology = false;
    2214             : #ifdef DEBUG
    2215           0 :                 char *wkt1 = nullptr;
    2216           0 :                 char *wkt2 = nullptr;
    2217           0 :                 thisPoly.poPolygon->exportToWkt(&wkt1);
    2218           0 :                 otherPoly.poPolygon->exportToWkt(&wkt2);
    2219           0 :                 const int realJ = static_cast<int>(&otherPoly - &asPolyEx[0]);
    2220           0 :                 CPLDebug("OGR",
    2221             :                          "Bad intersection for polygons %d and %d\n"
    2222             :                          "geom %d: %s\n"
    2223             :                          "geom %d: %s",
    2224             :                          static_cast<int>(i), realJ, static_cast<int>(i), wkt1,
    2225             :                          realJ, wkt2);
    2226           0 :                 CPLFree(wkt1);
    2227           0 :                 CPLFree(wkt2);
    2228             : #endif
    2229             :             }
    2230             :         }
    2231             : 
    2232        1332 :         if (j == nCandidates)
    2233             :         {
    2234             :             // We come here because we are not included in anything.
    2235             :             // We are toplevel.
    2236         487 :             nCountTopLevel++;
    2237         487 :             thisPoly.bIsTopLevel = true;
    2238         487 :             thisPoly.poEnclosingPolygon = nullptr;
    2239             :         }
    2240             :     }
    2241             : 
    2242       14707 :     if (pbIsValidGeometry)
    2243       14198 :         *pbIsValidGeometry = bValidTopology && !bMixedUpGeometries;
    2244             : 
    2245             :     /* --------------------------------------------------------------------- */
    2246             :     /*      Things broke down - just mark everything as top-level so it gets */
    2247             :     /*      turned into a multipolygon.                                      */
    2248             :     /* --------------------------------------------------------------------- */
    2249       14707 :     if (!bValidTopology || bMixedUpGeometries)
    2250             :     {
    2251       71558 :         for (auto &sPolyEx : asPolyEx)
    2252             :         {
    2253       57610 :             sPolyEx.bIsTopLevel = true;
    2254             :         }
    2255       13948 :         nCountTopLevel = static_cast<int>(asPolyEx.size());
    2256             :     }
    2257             : 
    2258             :     /* -------------------------------------------------------------------- */
    2259             :     /*      Try to turn into one or more polygons based on the ring         */
    2260             :     /*      relationships.                                                  */
    2261             :     /* -------------------------------------------------------------------- */
    2262             :     // STEP 3: Sort again in initial order.
    2263       14707 :     std::sort(asPolyEx.begin(), asPolyEx.end(),
    2264             :               OGRGeometryFactoryCompareByIndex);
    2265             : 
    2266             :     // STEP 4: Add holes as rings of their enclosing polygon.
    2267       74736 :     for (auto &sPolyEx : asPolyEx)
    2268             :     {
    2269       60029 :         if (sPolyEx.bIsTopLevel == false)
    2270             :         {
    2271         844 :             sPolyEx.poEnclosingPolygon->addRingDirectly(
    2272         844 :                 sPolyEx.poPolygon->stealExteriorRingCurve());
    2273         844 :             delete sPolyEx.poPolygon;
    2274             :         }
    2275       59185 :         else if (nCountTopLevel == 1)
    2276             :         {
    2277          93 :             geom = sPolyEx.poPolygon;
    2278             :         }
    2279             :     }
    2280             : 
    2281             :     // STEP 5: Add toplevel polygons.
    2282       14707 :     if (nCountTopLevel > 1)
    2283             :     {
    2284             :         OGRGeometryCollection *poGC =
    2285       14614 :             bHasCurves ? new OGRMultiSurface() : new OGRMultiPolygon();
    2286       74424 :         for (auto &sPolyEx : asPolyEx)
    2287             :         {
    2288       59810 :             if (sPolyEx.bIsTopLevel)
    2289             :             {
    2290       59092 :                 poGC->addGeometryDirectly(sPolyEx.poPolygon);
    2291             :             }
    2292             :         }
    2293       14614 :         geom = poGC;
    2294             :     }
    2295             : 
    2296       14707 :     return geom;
    2297             : }
    2298             : 
    2299             : /************************************************************************/
    2300             : /*                           createFromGML()                            */
    2301             : /************************************************************************/
    2302             : 
    2303             : /**
    2304             :  * \brief Create geometry from GML.
    2305             :  *
    2306             :  * This method translates a fragment of GML containing only the geometry
    2307             :  * portion into a corresponding OGRGeometry.  There are many limitations
    2308             :  * on the forms of GML geometries supported by this parser, but they are
    2309             :  * too numerous to list here.
    2310             :  *
    2311             :  * The following GML2 elements are parsed : Point, LineString, Polygon,
    2312             :  * MultiPoint, MultiLineString, MultiPolygon, MultiGeometry.
    2313             :  *
    2314             :  * The following GML3 elements are parsed : Surface,
    2315             :  * MultiSurface, PolygonPatch, Triangle, Rectangle, Curve, MultiCurve,
    2316             :  * LineStringSegment, Arc, Circle, CompositeSurface, OrientableSurface, Solid,
    2317             :  * Shell, Tin, TriangulatedSurface.
    2318             :  *
    2319             :  * Arc and Circle elements are returned as curves by default. Stroking to
    2320             :  * linestrings can be done with
    2321             :  * OGR_G_ForceTo(hGeom, OGR_GT_GetLinear(OGR_G_GetGeometryType(hGeom)), NULL).
    2322             :  * A 4 degrees step is used by default, unless the user
    2323             :  * has overridden the value with the OGR_ARC_STEPSIZE configuration variable.
    2324             :  *
    2325             :  * The C function OGR_G_CreateFromGML() is the same as this method.
    2326             :  *
    2327             :  * @param pszData The GML fragment for the geometry.
    2328             :  *
    2329             :  * @return a geometry on success, or NULL on error.
    2330             :  *
    2331             :  * @see OGR_G_ForceTo()
    2332             :  * @see OGR_GT_GetLinear()
    2333             :  * @see OGR_G_GetGeometryType()
    2334             :  */
    2335             : 
    2336           0 : OGRGeometry *OGRGeometryFactory::createFromGML(const char *pszData)
    2337             : 
    2338             : {
    2339             :     OGRGeometryH hGeom;
    2340             : 
    2341           0 :     hGeom = OGR_G_CreateFromGML(pszData);
    2342             : 
    2343           0 :     return OGRGeometry::FromHandle(hGeom);
    2344             : }
    2345             : 
    2346             : /************************************************************************/
    2347             : /*                           createFromGEOS()                           */
    2348             : /************************************************************************/
    2349             : 
    2350             : /** Builds a OGRGeometry* from a GEOSGeom.
    2351             :  * @param hGEOSCtxt GEOS context
    2352             :  * @param geosGeom GEOS geometry
    2353             :  * @return a OGRGeometry*
    2354             :  */
    2355        3933 : OGRGeometry *OGRGeometryFactory::createFromGEOS(
    2356             :     UNUSED_IF_NO_GEOS GEOSContextHandle_t hGEOSCtxt,
    2357             :     UNUSED_IF_NO_GEOS GEOSGeom geosGeom)
    2358             : 
    2359             : {
    2360             : #ifndef HAVE_GEOS
    2361             : 
    2362             :     CPLError(CE_Failure, CPLE_NotSupported, "GEOS support not enabled.");
    2363             :     return nullptr;
    2364             : 
    2365             : #else
    2366             : 
    2367        3933 :     size_t nSize = 0;
    2368        3933 :     unsigned char *pabyBuf = nullptr;
    2369        3933 :     OGRGeometry *poGeometry = nullptr;
    2370             : 
    2371             :     // Special case as POINT EMPTY cannot be translated to WKB.
    2372        4035 :     if (GEOSGeomTypeId_r(hGEOSCtxt, geosGeom) == GEOS_POINT &&
    2373         102 :         GEOSisEmpty_r(hGEOSCtxt, geosGeom))
    2374          14 :         return new OGRPoint();
    2375             : 
    2376             :     const int nCoordDim =
    2377        3919 :         GEOSGeom_getCoordinateDimension_r(hGEOSCtxt, geosGeom);
    2378        3920 :     GEOSWKBWriter *wkbwriter = GEOSWKBWriter_create_r(hGEOSCtxt);
    2379        3920 :     GEOSWKBWriter_setOutputDimension_r(hGEOSCtxt, wkbwriter, nCoordDim);
    2380        3920 :     pabyBuf = GEOSWKBWriter_write_r(hGEOSCtxt, wkbwriter, geosGeom, &nSize);
    2381        3920 :     GEOSWKBWriter_destroy_r(hGEOSCtxt, wkbwriter);
    2382             : 
    2383        3920 :     if (pabyBuf == nullptr || nSize == 0)
    2384             :     {
    2385           0 :         return nullptr;
    2386             :     }
    2387             : 
    2388        3920 :     if (OGRGeometryFactory::createFromWkb(pabyBuf, nullptr, &poGeometry,
    2389        3920 :                                           static_cast<int>(nSize)) !=
    2390             :         OGRERR_NONE)
    2391             :     {
    2392           0 :         poGeometry = nullptr;
    2393             :     }
    2394             : 
    2395        3920 :     GEOSFree_r(hGEOSCtxt, pabyBuf);
    2396             : 
    2397        3920 :     return poGeometry;
    2398             : 
    2399             : #endif  // HAVE_GEOS
    2400             : }
    2401             : 
    2402             : /************************************************************************/
    2403             : /*                              haveGEOS()                              */
    2404             : /************************************************************************/
    2405             : 
    2406             : /**
    2407             :  * \brief Test if GEOS enabled.
    2408             :  *
    2409             :  * This static method returns TRUE if GEOS support is built into OGR,
    2410             :  * otherwise it returns FALSE.
    2411             :  *
    2412             :  * @return TRUE if available, otherwise FALSE.
    2413             :  */
    2414             : 
    2415       33772 : bool OGRGeometryFactory::haveGEOS()
    2416             : 
    2417             : {
    2418             : #ifndef HAVE_GEOS
    2419             :     return false;
    2420             : #else
    2421       33772 :     return true;
    2422             : #endif
    2423             : }
    2424             : 
    2425             : /************************************************************************/
    2426             : /*                           createFromFgf()                            */
    2427             : /************************************************************************/
    2428             : 
    2429             : /**
    2430             :  * \brief Create a geometry object of the appropriate type from its FGF (FDO
    2431             :  * Geometry Format) binary representation.
    2432             :  *
    2433             :  * Also note that this is a static method, and that there
    2434             :  * is no need to instantiate an OGRGeometryFactory object.
    2435             :  *
    2436             :  * The C function OGR_G_CreateFromFgf() is the same as this method.
    2437             :  *
    2438             :  * @param pabyData pointer to the input BLOB data.
    2439             :  * @param poSR pointer to the spatial reference to be assigned to the
    2440             :  *             created geometry object.  This may be NULL.
    2441             :  * @param ppoReturn the newly created geometry object will be assigned to the
    2442             :  *                  indicated pointer on return.  This will be NULL in case
    2443             :  *                  of failure, but NULL might be a valid return for a NULL
    2444             :  * shape.
    2445             :  * @param nBytes the number of bytes available in pabyData.
    2446             :  * @param pnBytesConsumed if not NULL, it will be set to the number of bytes
    2447             :  * consumed (at most nBytes).
    2448             :  *
    2449             :  * @return OGRERR_NONE if all goes well, otherwise any of
    2450             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
    2451             :  * OGRERR_CORRUPT_DATA may be returned.
    2452             :  */
    2453             : 
    2454         293 : OGRErr OGRGeometryFactory::createFromFgf(const void *pabyData,
    2455             :                                          OGRSpatialReference *poSR,
    2456             :                                          OGRGeometry **ppoReturn, int nBytes,
    2457             :                                          int *pnBytesConsumed)
    2458             : 
    2459             : {
    2460         293 :     return createFromFgfInternal(static_cast<const GByte *>(pabyData), poSR,
    2461         293 :                                  ppoReturn, nBytes, pnBytesConsumed, 0);
    2462             : }
    2463             : 
    2464             : /************************************************************************/
    2465             : /*                       createFromFgfInternal()                        */
    2466             : /************************************************************************/
    2467             : 
    2468         296 : OGRErr OGRGeometryFactory::createFromFgfInternal(
    2469             :     const unsigned char *pabyData, OGRSpatialReference *poSR,
    2470             :     OGRGeometry **ppoReturn, int nBytes, int *pnBytesConsumed, int nRecLevel)
    2471             : {
    2472             :     // Arbitrary value, but certainly large enough for reasonable usages.
    2473         296 :     if (nRecLevel == 32)
    2474             :     {
    2475           0 :         CPLError(CE_Failure, CPLE_AppDefined,
    2476             :                  "Too many recursion levels (%d) while parsing FGF geometry.",
    2477             :                  nRecLevel);
    2478           0 :         return OGRERR_CORRUPT_DATA;
    2479             :     }
    2480             : 
    2481         296 :     *ppoReturn = nullptr;
    2482             : 
    2483         296 :     if (nBytes < 4)
    2484         109 :         return OGRERR_NOT_ENOUGH_DATA;
    2485             : 
    2486             :     /* -------------------------------------------------------------------- */
    2487             :     /*      Decode the geometry type.                                       */
    2488             :     /* -------------------------------------------------------------------- */
    2489         187 :     GInt32 nGType = 0;
    2490         187 :     memcpy(&nGType, pabyData + 0, 4);
    2491         187 :     CPL_LSBPTR32(&nGType);
    2492             : 
    2493         187 :     if (nGType < 0 || nGType > 13)
    2494         173 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
    2495             : 
    2496             :     /* -------------------------------------------------------------------- */
    2497             :     /*      Decode the dimensionality if appropriate.                       */
    2498             :     /* -------------------------------------------------------------------- */
    2499          14 :     int nTupleSize = 0;
    2500          14 :     GInt32 nGDim = 0;
    2501             : 
    2502             :     // TODO: Why is this a switch?
    2503          14 :     switch (nGType)
    2504             :     {
    2505           9 :         case 1:  // Point
    2506             :         case 2:  // LineString
    2507             :         case 3:  // Polygon
    2508           9 :             if (nBytes < 8)
    2509           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2510             : 
    2511           9 :             memcpy(&nGDim, pabyData + 4, 4);
    2512           9 :             CPL_LSBPTR32(&nGDim);
    2513             : 
    2514           9 :             if (nGDim < 0 || nGDim > 3)
    2515           0 :                 return OGRERR_CORRUPT_DATA;
    2516             : 
    2517           9 :             nTupleSize = 2;
    2518           9 :             if (nGDim & 0x01)  // Z
    2519           1 :                 nTupleSize++;
    2520           9 :             if (nGDim & 0x02)  // M
    2521           0 :                 nTupleSize++;
    2522             : 
    2523           9 :             break;
    2524             : 
    2525           5 :         default:
    2526           5 :             break;
    2527             :     }
    2528             : 
    2529          14 :     OGRGeometry *poGeom = nullptr;
    2530             : 
    2531             :     /* -------------------------------------------------------------------- */
    2532             :     /*      None                                                            */
    2533             :     /* -------------------------------------------------------------------- */
    2534          14 :     if (nGType == 0)
    2535             :     {
    2536           0 :         if (pnBytesConsumed)
    2537           0 :             *pnBytesConsumed = 4;
    2538             :     }
    2539             : 
    2540             :     /* -------------------------------------------------------------------- */
    2541             :     /*      Point                                                           */
    2542             :     /* -------------------------------------------------------------------- */
    2543          14 :     else if (nGType == 1)
    2544             :     {
    2545           3 :         if (nBytes < nTupleSize * 8 + 8)
    2546           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2547             : 
    2548           3 :         double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2549           3 :         memcpy(adfTuple, pabyData + 8, nTupleSize * 8);
    2550             : #ifdef CPL_MSB
    2551             :         for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2552             :             CPL_SWAP64PTR(adfTuple + iOrdinal);
    2553             : #endif
    2554           3 :         if (nTupleSize > 2)
    2555           1 :             poGeom = new OGRPoint(adfTuple[0], adfTuple[1], adfTuple[2]);
    2556             :         else
    2557           2 :             poGeom = new OGRPoint(adfTuple[0], adfTuple[1]);
    2558             : 
    2559           3 :         if (pnBytesConsumed)
    2560           1 :             *pnBytesConsumed = 8 + nTupleSize * 8;
    2561             :     }
    2562             : 
    2563             :     /* -------------------------------------------------------------------- */
    2564             :     /*      LineString                                                      */
    2565             :     /* -------------------------------------------------------------------- */
    2566          11 :     else if (nGType == 2)
    2567             :     {
    2568           2 :         if (nBytes < 12)
    2569           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2570             : 
    2571           2 :         GInt32 nPointCount = 0;
    2572           2 :         memcpy(&nPointCount, pabyData + 8, 4);
    2573           2 :         CPL_LSBPTR32(&nPointCount);
    2574             : 
    2575           2 :         if (nPointCount < 0 || nPointCount > INT_MAX / (nTupleSize * 8))
    2576           0 :             return OGRERR_CORRUPT_DATA;
    2577             : 
    2578           2 :         if (nBytes - 12 < nTupleSize * 8 * nPointCount)
    2579           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2580             : 
    2581           2 :         OGRLineString *poLS = new OGRLineString();
    2582           2 :         poGeom = poLS;
    2583           2 :         poLS->setNumPoints(nPointCount);
    2584             : 
    2585           4 :         for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    2586             :         {
    2587           2 :             double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2588           2 :             memcpy(adfTuple, pabyData + 12 + 8 * nTupleSize * iPoint,
    2589           2 :                    nTupleSize * 8);
    2590             : #ifdef CPL_MSB
    2591             :             for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2592             :                 CPL_SWAP64PTR(adfTuple + iOrdinal);
    2593             : #endif
    2594           2 :             if (nTupleSize > 2)
    2595           0 :                 poLS->setPoint(iPoint, adfTuple[0], adfTuple[1], adfTuple[2]);
    2596             :             else
    2597           2 :                 poLS->setPoint(iPoint, adfTuple[0], adfTuple[1]);
    2598             :         }
    2599             : 
    2600           2 :         if (pnBytesConsumed)
    2601           0 :             *pnBytesConsumed = 12 + nTupleSize * 8 * nPointCount;
    2602             :     }
    2603             : 
    2604             :     /* -------------------------------------------------------------------- */
    2605             :     /*      Polygon                                                         */
    2606             :     /* -------------------------------------------------------------------- */
    2607           9 :     else if (nGType == 3)
    2608             :     {
    2609           4 :         if (nBytes < 12)
    2610           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2611             : 
    2612           4 :         GInt32 nRingCount = 0;
    2613           4 :         memcpy(&nRingCount, pabyData + 8, 4);
    2614           4 :         CPL_LSBPTR32(&nRingCount);
    2615             : 
    2616           4 :         if (nRingCount < 0 || nRingCount > INT_MAX / 4)
    2617           0 :             return OGRERR_CORRUPT_DATA;
    2618             : 
    2619             :         // Each ring takes at least 4 bytes.
    2620           4 :         if (nBytes - 12 < nRingCount * 4)
    2621           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2622             : 
    2623           4 :         int nNextByte = 12;
    2624             : 
    2625           4 :         OGRPolygon *poPoly = new OGRPolygon();
    2626           4 :         poGeom = poPoly;
    2627             : 
    2628          10 :         for (int iRing = 0; iRing < nRingCount; iRing++)
    2629             :         {
    2630           6 :             if (nBytes - nNextByte < 4)
    2631             :             {
    2632           0 :                 delete poGeom;
    2633           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2634             :             }
    2635             : 
    2636           6 :             GInt32 nPointCount = 0;
    2637           6 :             memcpy(&nPointCount, pabyData + nNextByte, 4);
    2638           6 :             CPL_LSBPTR32(&nPointCount);
    2639             : 
    2640           6 :             if (nPointCount < 0 || nPointCount > INT_MAX / (nTupleSize * 8))
    2641             :             {
    2642           0 :                 delete poGeom;
    2643           0 :                 return OGRERR_CORRUPT_DATA;
    2644             :             }
    2645             : 
    2646           6 :             nNextByte += 4;
    2647             : 
    2648           6 :             if (nBytes - nNextByte < nTupleSize * 8 * nPointCount)
    2649             :             {
    2650           0 :                 delete poGeom;
    2651           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2652             :             }
    2653             : 
    2654           6 :             OGRLinearRing *poLR = new OGRLinearRing();
    2655           6 :             poLR->setNumPoints(nPointCount);
    2656             : 
    2657          12 :             for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    2658             :             {
    2659           6 :                 double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2660           6 :                 memcpy(adfTuple, pabyData + nNextByte, nTupleSize * 8);
    2661           6 :                 nNextByte += nTupleSize * 8;
    2662             : 
    2663             : #ifdef CPL_MSB
    2664             :                 for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2665             :                     CPL_SWAP64PTR(adfTuple + iOrdinal);
    2666             : #endif
    2667           6 :                 if (nTupleSize > 2)
    2668           0 :                     poLR->setPoint(iPoint, adfTuple[0], adfTuple[1],
    2669             :                                    adfTuple[2]);
    2670             :                 else
    2671           6 :                     poLR->setPoint(iPoint, adfTuple[0], adfTuple[1]);
    2672             :             }
    2673             : 
    2674           6 :             poPoly->addRingDirectly(poLR);
    2675             :         }
    2676             : 
    2677           4 :         if (pnBytesConsumed)
    2678           2 :             *pnBytesConsumed = nNextByte;
    2679             :     }
    2680             : 
    2681             :     /* -------------------------------------------------------------------- */
    2682             :     /*      GeometryCollections of various kinds.                           */
    2683             :     /* -------------------------------------------------------------------- */
    2684           5 :     else if (nGType == 4      // MultiPoint
    2685           5 :              || nGType == 5   // MultiLineString
    2686           5 :              || nGType == 6   // MultiPolygon
    2687           3 :              || nGType == 7)  // MultiGeometry
    2688             :     {
    2689           5 :         if (nBytes < 8)
    2690           3 :             return OGRERR_NOT_ENOUGH_DATA;
    2691             : 
    2692           5 :         GInt32 nGeomCount = 0;
    2693           5 :         memcpy(&nGeomCount, pabyData + 4, 4);
    2694           5 :         CPL_LSBPTR32(&nGeomCount);
    2695             : 
    2696           5 :         if (nGeomCount < 0 || nGeomCount > INT_MAX / 4)
    2697           0 :             return OGRERR_CORRUPT_DATA;
    2698             : 
    2699             :         // Each geometry takes at least 4 bytes.
    2700           5 :         if (nBytes - 8 < 4 * nGeomCount)
    2701           2 :             return OGRERR_NOT_ENOUGH_DATA;
    2702             : 
    2703           3 :         OGRGeometryCollection *poGC = nullptr;
    2704           3 :         if (nGType == 4)
    2705           0 :             poGC = new OGRMultiPoint();
    2706           3 :         else if (nGType == 5)
    2707           0 :             poGC = new OGRMultiLineString();
    2708           3 :         else if (nGType == 6)
    2709           1 :             poGC = new OGRMultiPolygon();
    2710           2 :         else if (nGType == 7)
    2711           2 :             poGC = new OGRGeometryCollection();
    2712             : 
    2713           3 :         int nBytesUsed = 8;
    2714             : 
    2715           5 :         for (int iGeom = 0; iGeom < nGeomCount; iGeom++)
    2716             :         {
    2717           3 :             int nThisGeomSize = 0;
    2718           3 :             OGRGeometry *poThisGeom = nullptr;
    2719             : 
    2720           6 :             const OGRErr eErr = createFromFgfInternal(
    2721           3 :                 pabyData + nBytesUsed, poSR, &poThisGeom, nBytes - nBytesUsed,
    2722             :                 &nThisGeomSize, nRecLevel + 1);
    2723           3 :             if (eErr != OGRERR_NONE)
    2724             :             {
    2725           0 :                 delete poGC;
    2726           1 :                 return eErr;
    2727             :             }
    2728             : 
    2729           3 :             nBytesUsed += nThisGeomSize;
    2730           3 :             if (poThisGeom != nullptr)
    2731             :             {
    2732           3 :                 const OGRErr eErr2 = poGC->addGeometryDirectly(poThisGeom);
    2733           3 :                 if (eErr2 != OGRERR_NONE)
    2734             :                 {
    2735           1 :                     delete poGC;
    2736           1 :                     delete poThisGeom;
    2737           1 :                     return eErr2;
    2738             :                 }
    2739             :             }
    2740             :         }
    2741             : 
    2742           2 :         poGeom = poGC;
    2743           2 :         if (pnBytesConsumed)
    2744           2 :             *pnBytesConsumed = nBytesUsed;
    2745             :     }
    2746             : 
    2747             :     /* -------------------------------------------------------------------- */
    2748             :     /*      Currently unsupported geometry.                                 */
    2749             :     /*                                                                      */
    2750             :     /*      We need to add 10/11/12/13 curve types in some fashion.         */
    2751             :     /* -------------------------------------------------------------------- */
    2752             :     else
    2753             :     {
    2754           0 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
    2755             :     }
    2756             : 
    2757             :     /* -------------------------------------------------------------------- */
    2758             :     /*      Assign spatial reference system.                                */
    2759             :     /* -------------------------------------------------------------------- */
    2760          11 :     if (poGeom != nullptr && poSR)
    2761           0 :         poGeom->assignSpatialReference(poSR);
    2762          11 :     *ppoReturn = poGeom;
    2763             : 
    2764          11 :     return OGRERR_NONE;
    2765             : }
    2766             : 
    2767             : /************************************************************************/
    2768             : /*                        OGR_G_CreateFromFgf()                         */
    2769             : /************************************************************************/
    2770             : 
    2771             : /**
    2772             :  * \brief Create a geometry object of the appropriate type from its FGF
    2773             :  * (FDO Geometry Format) binary representation.
    2774             :  *
    2775             :  * See OGRGeometryFactory::createFromFgf() */
    2776           0 : OGRErr CPL_DLL OGR_G_CreateFromFgf(const void *pabyData,
    2777             :                                    OGRSpatialReferenceH hSRS,
    2778             :                                    OGRGeometryH *phGeometry, int nBytes,
    2779             :                                    int *pnBytesConsumed)
    2780             : 
    2781             : {
    2782           0 :     return OGRGeometryFactory::createFromFgf(
    2783             :         pabyData, OGRSpatialReference::FromHandle(hSRS),
    2784           0 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes, pnBytesConsumed);
    2785             : }
    2786             : 
    2787             : /************************************************************************/
    2788             : /*                SplitLineStringAtDateline()                           */
    2789             : /************************************************************************/
    2790             : 
    2791           8 : static void SplitLineStringAtDateline(OGRGeometryCollection *poMulti,
    2792             :                                       const OGRLineString *poLS,
    2793             :                                       double dfDateLineOffset, double dfXOffset)
    2794             : {
    2795           8 :     const double dfLeftBorderX = 180 - dfDateLineOffset;
    2796           8 :     const double dfRightBorderX = -180 + dfDateLineOffset;
    2797           8 :     const double dfDiffSpace = 360 - dfDateLineOffset;
    2798             : 
    2799           8 :     const bool bIs3D = poLS->getCoordinateDimension() == 3;
    2800           8 :     OGRLineString *poNewLS = new OGRLineString();
    2801           8 :     poMulti->addGeometryDirectly(poNewLS);
    2802          35 :     for (int i = 0; i < poLS->getNumPoints(); i++)
    2803             :     {
    2804          27 :         const double dfX = poLS->getX(i) + dfXOffset;
    2805          27 :         if (i > 0 && fabs(dfX - (poLS->getX(i - 1) + dfXOffset)) > dfDiffSpace)
    2806             :         {
    2807           9 :             double dfX1 = poLS->getX(i - 1) + dfXOffset;
    2808           9 :             double dfY1 = poLS->getY(i - 1);
    2809           9 :             double dfZ1 = poLS->getY(i - 1);
    2810           9 :             double dfX2 = poLS->getX(i) + dfXOffset;
    2811           9 :             double dfY2 = poLS->getY(i);
    2812           9 :             double dfZ2 = poLS->getY(i);
    2813             : 
    2814           8 :             if (dfX1 > -180 && dfX1 < dfRightBorderX && dfX2 == 180 &&
    2815           0 :                 i + 1 < poLS->getNumPoints() &&
    2816          17 :                 poLS->getX(i + 1) + dfXOffset > -180 &&
    2817           0 :                 poLS->getX(i + 1) + dfXOffset < dfRightBorderX)
    2818             :             {
    2819           0 :                 if (bIs3D)
    2820           0 :                     poNewLS->addPoint(-180, poLS->getY(i), poLS->getZ(i));
    2821             :                 else
    2822           0 :                     poNewLS->addPoint(-180, poLS->getY(i));
    2823             : 
    2824           0 :                 i++;
    2825             : 
    2826           0 :                 if (bIs3D)
    2827           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i),
    2828             :                                       poLS->getZ(i));
    2829             :                 else
    2830           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i));
    2831           0 :                 continue;
    2832             :             }
    2833           4 :             else if (dfX1 > dfLeftBorderX && dfX1 < 180 && dfX2 == -180 &&
    2834           0 :                      i + 1 < poLS->getNumPoints() &&
    2835          13 :                      poLS->getX(i + 1) + dfXOffset > dfLeftBorderX &&
    2836           0 :                      poLS->getX(i + 1) + dfXOffset < 180)
    2837             :             {
    2838           0 :                 if (bIs3D)
    2839           0 :                     poNewLS->addPoint(180, poLS->getY(i), poLS->getZ(i));
    2840             :                 else
    2841           0 :                     poNewLS->addPoint(180, poLS->getY(i));
    2842             : 
    2843           0 :                 i++;
    2844             : 
    2845           0 :                 if (bIs3D)
    2846           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i),
    2847             :                                       poLS->getZ(i));
    2848             :                 else
    2849           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i));
    2850           0 :                 continue;
    2851             :             }
    2852             : 
    2853           9 :             if (dfX1 < dfRightBorderX && dfX2 > dfLeftBorderX)
    2854             :             {
    2855           5 :                 std::swap(dfX1, dfX2);
    2856           5 :                 std::swap(dfY1, dfY2);
    2857           5 :                 std::swap(dfZ1, dfZ2);
    2858             :             }
    2859           9 :             if (dfX1 > dfLeftBorderX && dfX2 < dfRightBorderX)
    2860           9 :                 dfX2 += 360;
    2861             : 
    2862           9 :             if (dfX1 <= 180 && dfX2 >= 180 && dfX1 < dfX2)
    2863             :             {
    2864           9 :                 const double dfRatio = (180 - dfX1) / (dfX2 - dfX1);
    2865           9 :                 const double dfY = dfRatio * dfY2 + (1 - dfRatio) * dfY1;
    2866           9 :                 const double dfZ = dfRatio * dfZ2 + (1 - dfRatio) * dfZ1;
    2867             :                 double dfNewX =
    2868           9 :                     poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? 180 : -180;
    2869          18 :                 if (poNewLS->getNumPoints() == 0 ||
    2870          18 :                     poNewLS->getX(poNewLS->getNumPoints() - 1) != dfNewX ||
    2871           2 :                     poNewLS->getY(poNewLS->getNumPoints() - 1) != dfY)
    2872             :                 {
    2873           7 :                     if (bIs3D)
    2874           0 :                         poNewLS->addPoint(dfNewX, dfY, dfZ);
    2875             :                     else
    2876           7 :                         poNewLS->addPoint(dfNewX, dfY);
    2877             :                 }
    2878           9 :                 poNewLS = new OGRLineString();
    2879           9 :                 if (bIs3D)
    2880           0 :                     poNewLS->addPoint(
    2881           0 :                         poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? -180
    2882             :                                                                       : 180,
    2883             :                         dfY, dfZ);
    2884             :                 else
    2885           9 :                     poNewLS->addPoint(
    2886           9 :                         poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? -180
    2887             :                                                                       : 180,
    2888             :                         dfY);
    2889           9 :                 poMulti->addGeometryDirectly(poNewLS);
    2890             :             }
    2891             :             else
    2892             :             {
    2893           0 :                 poNewLS = new OGRLineString();
    2894           0 :                 poMulti->addGeometryDirectly(poNewLS);
    2895             :             }
    2896             :         }
    2897          27 :         if (bIs3D)
    2898           0 :             poNewLS->addPoint(dfX, poLS->getY(i), poLS->getZ(i));
    2899             :         else
    2900          27 :             poNewLS->addPoint(dfX, poLS->getY(i));
    2901             :     }
    2902           8 : }
    2903             : 
    2904             : /************************************************************************/
    2905             : /*               FixPolygonCoordinatesAtDateLine()                      */
    2906             : /************************************************************************/
    2907             : 
    2908             : #ifdef HAVE_GEOS
    2909           4 : static void FixPolygonCoordinatesAtDateLine(OGRPolygon *poPoly,
    2910             :                                             double dfDateLineOffset)
    2911             : {
    2912           4 :     const double dfLeftBorderX = 180 - dfDateLineOffset;
    2913           4 :     const double dfRightBorderX = -180 + dfDateLineOffset;
    2914           4 :     const double dfDiffSpace = 360 - dfDateLineOffset;
    2915             : 
    2916           8 :     for (int iPart = 0; iPart < 1 + poPoly->getNumInteriorRings(); iPart++)
    2917             :     {
    2918           4 :         OGRLineString *poLS = (iPart == 0) ? poPoly->getExteriorRing()
    2919           4 :                                            : poPoly->getInteriorRing(iPart - 1);
    2920           4 :         bool bGoEast = false;
    2921           4 :         const bool bIs3D = poLS->getCoordinateDimension() == 3;
    2922          36 :         for (int i = 1; i < poLS->getNumPoints(); i++)
    2923             :         {
    2924          32 :             double dfX = poLS->getX(i);
    2925          32 :             const double dfPrevX = poLS->getX(i - 1);
    2926          32 :             const double dfDiffLong = fabs(dfX - dfPrevX);
    2927          32 :             if (dfDiffLong > dfDiffSpace)
    2928             :             {
    2929          18 :                 if ((dfPrevX > dfLeftBorderX && dfX < dfRightBorderX) ||
    2930           6 :                     (dfX < 0 && bGoEast))
    2931             :                 {
    2932          16 :                     dfX += 360;
    2933          16 :                     bGoEast = true;
    2934          16 :                     if (bIs3D)
    2935           0 :                         poLS->setPoint(i, dfX, poLS->getY(i), poLS->getZ(i));
    2936             :                     else
    2937          16 :                         poLS->setPoint(i, dfX, poLS->getY(i));
    2938             :                 }
    2939           2 :                 else if (dfPrevX < dfRightBorderX && dfX > dfLeftBorderX)
    2940             :                 {
    2941           8 :                     for (int j = i - 1; j >= 0; j--)
    2942             :                     {
    2943           6 :                         dfX = poLS->getX(j);
    2944           6 :                         if (dfX < 0)
    2945             :                         {
    2946           6 :                             if (bIs3D)
    2947           0 :                                 poLS->setPoint(j, dfX + 360, poLS->getY(j),
    2948             :                                                poLS->getZ(j));
    2949             :                             else
    2950           6 :                                 poLS->setPoint(j, dfX + 360, poLS->getY(j));
    2951             :                         }
    2952             :                     }
    2953           2 :                     bGoEast = false;
    2954             :                 }
    2955             :                 else
    2956             :                 {
    2957           0 :                     bGoEast = false;
    2958             :                 }
    2959             :             }
    2960             :         }
    2961             :     }
    2962           4 : }
    2963             : #endif
    2964             : 
    2965             : /************************************************************************/
    2966             : /*                            AddOffsetToLon()                          */
    2967             : /************************************************************************/
    2968             : 
    2969          17 : static void AddOffsetToLon(OGRGeometry *poGeom, double dfOffset)
    2970             : {
    2971          17 :     switch (wkbFlatten(poGeom->getGeometryType()))
    2972             :     {
    2973           7 :         case wkbPolygon:
    2974             :         {
    2975          14 :             for (auto poSubGeom : *(poGeom->toPolygon()))
    2976             :             {
    2977           7 :                 AddOffsetToLon(poSubGeom, dfOffset);
    2978             :             }
    2979             : 
    2980           7 :             break;
    2981             :         }
    2982             : 
    2983           0 :         case wkbMultiLineString:
    2984             :         case wkbMultiPolygon:
    2985             :         case wkbGeometryCollection:
    2986             :         {
    2987           0 :             for (auto poSubGeom : *(poGeom->toGeometryCollection()))
    2988             :             {
    2989           0 :                 AddOffsetToLon(poSubGeom, dfOffset);
    2990             :             }
    2991             : 
    2992           0 :             break;
    2993             :         }
    2994             : 
    2995          10 :         case wkbLineString:
    2996             :         {
    2997          10 :             OGRLineString *poLineString = poGeom->toLineString();
    2998          10 :             const int nPointCount = poLineString->getNumPoints();
    2999          10 :             const int nCoordDim = poLineString->getCoordinateDimension();
    3000          63 :             for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    3001             :             {
    3002          53 :                 if (nCoordDim == 2)
    3003         106 :                     poLineString->setPoint(
    3004          53 :                         iPoint, poLineString->getX(iPoint) + dfOffset,
    3005             :                         poLineString->getY(iPoint));
    3006             :                 else
    3007           0 :                     poLineString->setPoint(
    3008           0 :                         iPoint, poLineString->getX(iPoint) + dfOffset,
    3009             :                         poLineString->getY(iPoint), poLineString->getZ(iPoint));
    3010             :             }
    3011          10 :             break;
    3012             :         }
    3013             : 
    3014           0 :         default:
    3015           0 :             break;
    3016             :     }
    3017          17 : }
    3018             : 
    3019             : /************************************************************************/
    3020             : /*                        AddSimpleGeomToMulti()                        */
    3021             : /************************************************************************/
    3022             : 
    3023             : #ifdef HAVE_GEOS
    3024          12 : static void AddSimpleGeomToMulti(OGRGeometryCollection *poMulti,
    3025             :                                  const OGRGeometry *poGeom)
    3026             : {
    3027          12 :     switch (wkbFlatten(poGeom->getGeometryType()))
    3028             :     {
    3029          12 :         case wkbPolygon:
    3030             :         case wkbLineString:
    3031          12 :             poMulti->addGeometry(poGeom);
    3032          12 :             break;
    3033             : 
    3034           0 :         case wkbMultiLineString:
    3035             :         case wkbMultiPolygon:
    3036             :         case wkbGeometryCollection:
    3037             :         {
    3038           0 :             for (const auto poSubGeom : *(poGeom->toGeometryCollection()))
    3039             :             {
    3040           0 :                 AddSimpleGeomToMulti(poMulti, poSubGeom);
    3041             :             }
    3042           0 :             break;
    3043             :         }
    3044             : 
    3045           0 :         default:
    3046           0 :             break;
    3047             :     }
    3048          12 : }
    3049             : #endif  // #ifdef HAVE_GEOS
    3050             : 
    3051             : /************************************************************************/
    3052             : /*                       WrapPointDateLine()                            */
    3053             : /************************************************************************/
    3054             : 
    3055          14 : static void WrapPointDateLine(OGRPoint *poPoint)
    3056             : {
    3057          14 :     if (poPoint->getX() > 180)
    3058             :     {
    3059           2 :         poPoint->setX(fmod(poPoint->getX() + 180, 360) - 180);
    3060             :     }
    3061          12 :     else if (poPoint->getX() < -180)
    3062             :     {
    3063           3 :         poPoint->setX(-(fmod(-poPoint->getX() + 180, 360) - 180));
    3064             :     }
    3065          14 : }
    3066             : 
    3067             : /************************************************************************/
    3068             : /*                 CutGeometryOnDateLineAndAddToMulti()                 */
    3069             : /************************************************************************/
    3070             : 
    3071          73 : static void CutGeometryOnDateLineAndAddToMulti(OGRGeometryCollection *poMulti,
    3072             :                                                const OGRGeometry *poGeom,
    3073             :                                                double dfDateLineOffset)
    3074             : {
    3075          73 :     const OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    3076          73 :     switch (eGeomType)
    3077             :     {
    3078           1 :         case wkbPoint:
    3079             :         {
    3080           1 :             auto poPoint = poGeom->toPoint()->clone();
    3081           1 :             WrapPointDateLine(poPoint);
    3082           1 :             poMulti->addGeometryDirectly(poPoint);
    3083           1 :             break;
    3084             :         }
    3085             : 
    3086          57 :         case wkbPolygon:
    3087             :         case wkbLineString:
    3088             :         {
    3089          57 :             bool bSplitLineStringAtDateline = false;
    3090          57 :             OGREnvelope oEnvelope;
    3091             : 
    3092          57 :             poGeom->getEnvelope(&oEnvelope);
    3093          57 :             const bool bAroundMinus180 = (oEnvelope.MinX < -180.0);
    3094             : 
    3095             :             // Naive heuristics... Place to improve.
    3096             : #ifdef HAVE_GEOS
    3097          57 :             std::unique_ptr<OGRGeometry> poDupGeom;
    3098          57 :             bool bWrapDateline = false;
    3099             : #endif
    3100             : 
    3101          57 :             const double dfLeftBorderX = 180 - dfDateLineOffset;
    3102          57 :             const double dfRightBorderX = -180 + dfDateLineOffset;
    3103          57 :             const double dfDiffSpace = 360 - dfDateLineOffset;
    3104             : 
    3105          57 :             const double dfXOffset = (bAroundMinus180) ? 360.0 : 0.0;
    3106          57 :             if (oEnvelope.MinX < -180 || oEnvelope.MaxX > 180 ||
    3107          55 :                 (oEnvelope.MinX + dfXOffset > dfLeftBorderX &&
    3108          12 :                  oEnvelope.MaxX + dfXOffset > 180))
    3109             :             {
    3110             : #ifndef HAVE_GEOS
    3111             :                 CPLError(CE_Failure, CPLE_NotSupported,
    3112             :                          "GEOS support not enabled.");
    3113             : #else
    3114           2 :                 bWrapDateline = true;
    3115             : #endif
    3116             :             }
    3117             :             else
    3118             :             {
    3119             :                 auto poLS = eGeomType == wkbPolygon
    3120          55 :                                 ? poGeom->toPolygon()->getExteriorRing()
    3121          14 :                                 : poGeom->toLineString();
    3122          55 :                 if (poLS)
    3123             :                 {
    3124          55 :                     double dfMaxSmallDiffLong = 0;
    3125          55 :                     bool bHasBigDiff = false;
    3126             :                     // Detect big gaps in longitude.
    3127         317 :                     for (int i = 1; i < poLS->getNumPoints(); i++)
    3128             :                     {
    3129         262 :                         const double dfPrevX = poLS->getX(i - 1) + dfXOffset;
    3130         262 :                         const double dfX = poLS->getX(i) + dfXOffset;
    3131         262 :                         const double dfDiffLong = fabs(dfX - dfPrevX);
    3132             : 
    3133         262 :                         if (dfDiffLong > dfDiffSpace &&
    3134          11 :                             ((dfX > dfLeftBorderX &&
    3135          10 :                               dfPrevX < dfRightBorderX) ||
    3136          10 :                              (dfPrevX > dfLeftBorderX && dfX < dfRightBorderX)))
    3137             :                         {
    3138          21 :                             constexpr double EPSILON = 1e-5;
    3139          25 :                             if (!(std::fabs(dfDiffLong - 360) < EPSILON &&
    3140           4 :                                   std::fabs(std::fabs(poLS->getY(i)) - 90) <
    3141             :                                       EPSILON))
    3142             :                             {
    3143          17 :                                 bHasBigDiff = true;
    3144          21 :                             }
    3145             :                         }
    3146         241 :                         else if (dfDiffLong > dfMaxSmallDiffLong)
    3147          61 :                             dfMaxSmallDiffLong = dfDiffLong;
    3148             :                     }
    3149          55 :                     if (bHasBigDiff && dfMaxSmallDiffLong < dfDateLineOffset)
    3150             :                     {
    3151          12 :                         if (eGeomType == wkbLineString)
    3152           8 :                             bSplitLineStringAtDateline = true;
    3153             :                         else
    3154             :                         {
    3155             : #ifndef HAVE_GEOS
    3156             :                             CPLError(CE_Failure, CPLE_NotSupported,
    3157             :                                      "GEOS support not enabled.");
    3158             : #else
    3159           4 :                             poDupGeom.reset(poGeom->clone());
    3160           4 :                             FixPolygonCoordinatesAtDateLine(
    3161             :                                 poDupGeom->toPolygon(), dfDateLineOffset);
    3162             : 
    3163           4 :                             OGREnvelope sEnvelope;
    3164           4 :                             poDupGeom->getEnvelope(&sEnvelope);
    3165           4 :                             bWrapDateline = sEnvelope.MinX != sEnvelope.MaxX;
    3166             : #endif
    3167             :                         }
    3168             :                     }
    3169             :                 }
    3170             :             }
    3171             : 
    3172          57 :             if (bSplitLineStringAtDateline)
    3173             :             {
    3174           8 :                 SplitLineStringAtDateline(poMulti, poGeom->toLineString(),
    3175             :                                           dfDateLineOffset,
    3176             :                                           (bAroundMinus180) ? 360.0 : 0.0);
    3177             :             }
    3178             : #ifdef HAVE_GEOS
    3179          49 :             else if (bWrapDateline)
    3180             :             {
    3181             :                 const OGRGeometry *poWorkGeom =
    3182           6 :                     poDupGeom ? poDupGeom.get() : poGeom;
    3183           6 :                 assert(poWorkGeom);
    3184           6 :                 OGRGeometry *poRectangle1 = nullptr;
    3185           6 :                 OGRGeometry *poRectangle2 = nullptr;
    3186           6 :                 const char *pszWKT1 =
    3187             :                     !bAroundMinus180
    3188           6 :                         ? "POLYGON((-180 90,180 90,180 -90,-180 -90,-180 90))"
    3189             :                         : "POLYGON((180 90,-180 90,-180 -90,180 -90,180 90))";
    3190           6 :                 const char *pszWKT2 =
    3191             :                     !bAroundMinus180
    3192           6 :                         ? "POLYGON((180 90,360 90,360 -90,180 -90,180 90))"
    3193             :                         : "POLYGON((-180 90,-360 90,-360 -90,-180 -90,-180 "
    3194             :                           "90))";
    3195           6 :                 OGRGeometryFactory::createFromWkt(pszWKT1, nullptr,
    3196             :                                                   &poRectangle1);
    3197           6 :                 OGRGeometryFactory::createFromWkt(pszWKT2, nullptr,
    3198             :                                                   &poRectangle2);
    3199             :                 auto poGeom1 = std::unique_ptr<OGRGeometry>(
    3200          12 :                     poWorkGeom->Intersection(poRectangle1));
    3201             :                 auto poGeom2 = std::unique_ptr<OGRGeometry>(
    3202          12 :                     poWorkGeom->Intersection(poRectangle2));
    3203           6 :                 delete poRectangle1;
    3204           6 :                 delete poRectangle2;
    3205             : 
    3206           6 :                 if (poGeom1 != nullptr && poGeom2 != nullptr)
    3207             :                 {
    3208           6 :                     AddSimpleGeomToMulti(poMulti, poGeom1.get());
    3209           6 :                     AddOffsetToLon(poGeom2.get(),
    3210             :                                    !bAroundMinus180 ? -360.0 : 360.0);
    3211           6 :                     AddSimpleGeomToMulti(poMulti, poGeom2.get());
    3212             :                 }
    3213             :                 else
    3214             :                 {
    3215           0 :                     AddSimpleGeomToMulti(poMulti, poGeom);
    3216             :                 }
    3217             :             }
    3218             : #endif
    3219             :             else
    3220             :             {
    3221          43 :                 poMulti->addGeometry(poGeom);
    3222             :             }
    3223          57 :             break;
    3224             :         }
    3225             : 
    3226          15 :         case wkbMultiLineString:
    3227             :         case wkbMultiPolygon:
    3228             :         case wkbGeometryCollection:
    3229             :         {
    3230          48 :             for (const auto poSubGeom : *(poGeom->toGeometryCollection()))
    3231             :             {
    3232          33 :                 CutGeometryOnDateLineAndAddToMulti(poMulti, poSubGeom,
    3233             :                                                    dfDateLineOffset);
    3234             :             }
    3235          15 :             break;
    3236             :         }
    3237             : 
    3238           0 :         default:
    3239           0 :             break;
    3240             :     }
    3241          73 : }
    3242             : 
    3243             : #ifdef HAVE_GEOS
    3244             : 
    3245             : /************************************************************************/
    3246             : /*                             RemovePoint()                            */
    3247             : /************************************************************************/
    3248             : 
    3249           9 : static void RemovePoint(OGRGeometry *poGeom, OGRPoint *poPoint)
    3250             : {
    3251           9 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3252           9 :     switch (eType)
    3253             :     {
    3254           4 :         case wkbLineString:
    3255             :         {
    3256           4 :             OGRLineString *poLS = poGeom->toLineString();
    3257           4 :             const bool bIs3D = (poLS->getCoordinateDimension() == 3);
    3258           4 :             int j = 0;
    3259          32 :             for (int i = 0; i < poLS->getNumPoints(); i++)
    3260             :             {
    3261          30 :                 if (poLS->getX(i) != poPoint->getX() ||
    3262           2 :                     poLS->getY(i) != poPoint->getY())
    3263             :                 {
    3264          26 :                     if (i > j)
    3265             :                     {
    3266           4 :                         if (bIs3D)
    3267             :                         {
    3268           0 :                             poLS->setPoint(j, poLS->getX(i), poLS->getY(i),
    3269             :                                            poLS->getZ(i));
    3270             :                         }
    3271             :                         else
    3272             :                         {
    3273           4 :                             poLS->setPoint(j, poLS->getX(i), poLS->getY(i));
    3274             :                         }
    3275             :                     }
    3276          26 :                     j++;
    3277             :                 }
    3278             :             }
    3279           4 :             poLS->setNumPoints(j);
    3280           4 :             break;
    3281             :         }
    3282             : 
    3283           4 :         case wkbPolygon:
    3284             :         {
    3285           4 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3286           4 :             if (poPoly->getExteriorRing() != nullptr)
    3287             :             {
    3288           4 :                 RemovePoint(poPoly->getExteriorRing(), poPoint);
    3289           4 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3290             :                 {
    3291           0 :                     RemovePoint(poPoly->getInteriorRing(i), poPoint);
    3292             :                 }
    3293             :             }
    3294           4 :             break;
    3295             :         }
    3296             : 
    3297           1 :         case wkbMultiLineString:
    3298             :         case wkbMultiPolygon:
    3299             :         case wkbGeometryCollection:
    3300             :         {
    3301           1 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3302           3 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3303             :             {
    3304           2 :                 RemovePoint(poGC->getGeometryRef(i), poPoint);
    3305             :             }
    3306           1 :             break;
    3307             :         }
    3308             : 
    3309           0 :         default:
    3310           0 :             break;
    3311             :     }
    3312           9 : }
    3313             : 
    3314             : /************************************************************************/
    3315             : /*                              GetDist()                               */
    3316             : /************************************************************************/
    3317             : 
    3318          48 : static double GetDist(double dfDeltaX, double dfDeltaY)
    3319             : {
    3320          48 :     return sqrt(dfDeltaX * dfDeltaX + dfDeltaY * dfDeltaY);
    3321             : }
    3322             : 
    3323             : /************************************************************************/
    3324             : /*                             AlterPole()                              */
    3325             : /*                                                                      */
    3326             : /* Replace and point at the pole by points really close to the pole,    */
    3327             : /* but on the previous and later segments.                              */
    3328             : /************************************************************************/
    3329             : 
    3330           5 : static void AlterPole(OGRGeometry *poGeom, OGRPoint *poPole,
    3331             :                       bool bIsRing = false)
    3332             : {
    3333           5 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3334           5 :     switch (eType)
    3335             :     {
    3336           2 :         case wkbLineString:
    3337             :         {
    3338           2 :             if (!bIsRing)
    3339           0 :                 return;
    3340           2 :             OGRLineString *poLS = poGeom->toLineString();
    3341           2 :             const int nNumPoints = poLS->getNumPoints();
    3342           2 :             if (nNumPoints >= 4)
    3343             :             {
    3344           2 :                 const bool bIs3D = (poLS->getCoordinateDimension() == 3);
    3345           4 :                 std::vector<OGRRawPoint> aoPoints;
    3346           4 :                 std::vector<double> adfZ;
    3347           2 :                 bool bMustClose = false;
    3348          10 :                 for (int i = 0; i < nNumPoints; i++)
    3349             :                 {
    3350           8 :                     const double dfX = poLS->getX(i);
    3351           8 :                     const double dfY = poLS->getY(i);
    3352           8 :                     if (dfX == poPole->getX() && dfY == poPole->getY())
    3353             :                     {
    3354             :                         // Replace the pole by points really close to it
    3355           2 :                         if (i == 0)
    3356           0 :                             bMustClose = true;
    3357           2 :                         if (i == nNumPoints - 1)
    3358           0 :                             continue;
    3359           2 :                         const int iBefore = i > 0 ? i - 1 : nNumPoints - 2;
    3360           2 :                         double dfXBefore = poLS->getX(iBefore);
    3361           2 :                         double dfYBefore = poLS->getY(iBefore);
    3362             :                         double dfNorm =
    3363           2 :                             GetDist(dfXBefore - dfX, dfYBefore - dfY);
    3364           2 :                         double dfXInterp =
    3365           2 :                             dfX + (dfXBefore - dfX) / dfNorm * 1.0e-7;
    3366           2 :                         double dfYInterp =
    3367           2 :                             dfY + (dfYBefore - dfY) / dfNorm * 1.0e-7;
    3368           2 :                         OGRRawPoint oPoint;
    3369           2 :                         oPoint.x = dfXInterp;
    3370           2 :                         oPoint.y = dfYInterp;
    3371           2 :                         aoPoints.push_back(oPoint);
    3372           2 :                         adfZ.push_back(poLS->getZ(i));
    3373             : 
    3374           2 :                         const int iAfter = i + 1;
    3375           2 :                         double dfXAfter = poLS->getX(iAfter);
    3376           2 :                         double dfYAfter = poLS->getY(iAfter);
    3377           2 :                         dfNorm = GetDist(dfXAfter - dfX, dfYAfter - dfY);
    3378           2 :                         dfXInterp = dfX + (dfXAfter - dfX) / dfNorm * 1e-7;
    3379           2 :                         dfYInterp = dfY + (dfYAfter - dfY) / dfNorm * 1e-7;
    3380           2 :                         oPoint.x = dfXInterp;
    3381           2 :                         oPoint.y = dfYInterp;
    3382           2 :                         aoPoints.push_back(oPoint);
    3383           2 :                         adfZ.push_back(poLS->getZ(i));
    3384             :                     }
    3385             :                     else
    3386             :                     {
    3387           6 :                         OGRRawPoint oPoint;
    3388           6 :                         oPoint.x = dfX;
    3389           6 :                         oPoint.y = dfY;
    3390           6 :                         aoPoints.push_back(oPoint);
    3391           6 :                         adfZ.push_back(poLS->getZ(i));
    3392             :                     }
    3393             :                 }
    3394           2 :                 if (bMustClose)
    3395             :                 {
    3396           0 :                     aoPoints.push_back(aoPoints[0]);
    3397           0 :                     adfZ.push_back(adfZ[0]);
    3398             :                 }
    3399             : 
    3400           4 :                 poLS->setPoints(static_cast<int>(aoPoints.size()),
    3401           2 :                                 &(aoPoints[0]), bIs3D ? &adfZ[0] : nullptr);
    3402             :             }
    3403           2 :             break;
    3404             :         }
    3405             : 
    3406           2 :         case wkbPolygon:
    3407             :         {
    3408           2 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3409           2 :             if (poPoly->getExteriorRing() != nullptr)
    3410             :             {
    3411           2 :                 AlterPole(poPoly->getExteriorRing(), poPole, true);
    3412           2 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3413             :                 {
    3414           0 :                     AlterPole(poPoly->getInteriorRing(i), poPole, true);
    3415             :                 }
    3416             :             }
    3417           2 :             break;
    3418             :         }
    3419             : 
    3420           1 :         case wkbMultiLineString:
    3421             :         case wkbMultiPolygon:
    3422             :         case wkbGeometryCollection:
    3423             :         {
    3424           1 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3425           2 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3426             :             {
    3427           1 :                 AlterPole(poGC->getGeometryRef(i), poPole);
    3428             :             }
    3429           1 :             break;
    3430             :         }
    3431             : 
    3432           0 :         default:
    3433           0 :             break;
    3434             :     }
    3435             : }
    3436             : 
    3437             : /************************************************************************/
    3438             : /*                        IsPolarToGeographic()                         */
    3439             : /*                                                                      */
    3440             : /* Returns true if poCT transforms from a projection that includes one  */
    3441             : /* of the pole in a continuous way.                                     */
    3442             : /************************************************************************/
    3443             : 
    3444          25 : static bool IsPolarToGeographic(OGRCoordinateTransformation *poCT,
    3445             :                                 OGRCoordinateTransformation *poRevCT,
    3446             :                                 bool &bIsNorthPolarOut)
    3447             : {
    3448          25 :     bool bIsNorthPolar = false;
    3449          25 :     bool bIsSouthPolar = false;
    3450          25 :     double x = 0.0;
    3451          25 :     double y = 90.0;
    3452             : 
    3453          25 :     CPLErrorStateBackuper oErrorBackuper(CPLQuietErrorHandler);
    3454             : 
    3455          25 :     const bool bBackupEmitErrors = poCT->GetEmitErrors();
    3456          25 :     poRevCT->SetEmitErrors(false);
    3457          25 :     poCT->SetEmitErrors(false);
    3458             : 
    3459          25 :     if (poRevCT->Transform(1, &x, &y) &&
    3460             :         // Surprisingly, pole south projects correctly back &
    3461             :         // forth for antarctic polar stereographic.  Therefore, check that
    3462             :         // the projected value is not too big.
    3463          25 :         fabs(x) < 1e10 && fabs(y) < 1e10)
    3464             :     {
    3465          23 :         double x_tab[] = {x, x - 1e5, x + 1e5};
    3466          23 :         double y_tab[] = {y, y - 1e5, y + 1e5};
    3467          23 :         if (poCT->Transform(3, x_tab, y_tab) &&
    3468          23 :             fabs(y_tab[0] - (90.0)) < 1e-10 &&
    3469          68 :             fabs(x_tab[2] - x_tab[1]) > 170 &&
    3470          22 :             fabs(y_tab[2] - y_tab[1]) < 1e-10)
    3471             :         {
    3472          22 :             bIsNorthPolar = true;
    3473             :         }
    3474             :     }
    3475             : 
    3476          25 :     x = 0.0;
    3477          25 :     y = -90.0;
    3478          25 :     if (poRevCT->Transform(1, &x, &y) && fabs(x) < 1e10 && fabs(y) < 1e10)
    3479             :     {
    3480          14 :         double x_tab[] = {x, x - 1e5, x + 1e5};
    3481          14 :         double y_tab[] = {y, y - 1e5, y + 1e5};
    3482          14 :         if (poCT->Transform(3, x_tab, y_tab) &&
    3483          14 :             fabs(y_tab[0] - (-90.0)) < 1e-10 &&
    3484          41 :             fabs(x_tab[2] - x_tab[1]) > 170 &&
    3485          13 :             fabs(y_tab[2] - y_tab[1]) < 1e-10)
    3486             :         {
    3487          13 :             bIsSouthPolar = true;
    3488             :         }
    3489             :     }
    3490             : 
    3491          25 :     poCT->SetEmitErrors(bBackupEmitErrors);
    3492             : 
    3493          25 :     if (bIsNorthPolar && bIsSouthPolar)
    3494             :     {
    3495          12 :         bIsNorthPolar = false;
    3496          12 :         bIsSouthPolar = false;
    3497             :     }
    3498             : 
    3499          25 :     bIsNorthPolarOut = bIsNorthPolar;
    3500          50 :     return bIsNorthPolar || bIsSouthPolar;
    3501             : }
    3502             : 
    3503             : /************************************************************************/
    3504             : /*                             ContainsPole()                           */
    3505             : /************************************************************************/
    3506             : 
    3507          14 : static bool ContainsPole(const OGRGeometry *poGeom, const OGRPoint *poPole)
    3508             : {
    3509          14 :     switch (wkbFlatten(poGeom->getGeometryType()))
    3510             :     {
    3511          12 :         case wkbPolygon:
    3512             :         case wkbCurvePolygon:
    3513             :         {
    3514          12 :             const auto poPoly = poGeom->toCurvePolygon();
    3515          12 :             if (poPoly->getNumInteriorRings() > 0)
    3516             :             {
    3517           3 :                 const auto poRing = poPoly->getExteriorRingCurve();
    3518           3 :                 OGRPolygon oPolygon;
    3519           3 :                 oPolygon.addRing(poRing);
    3520           3 :                 return oPolygon.Contains(poPole);
    3521             :             }
    3522             : 
    3523           9 :             return poGeom->Contains(poPole);
    3524             :         }
    3525             : 
    3526           2 :         case wkbMultiPolygon:
    3527             :         case wkbMultiSurface:
    3528             :         case wkbGeometryCollection:
    3529             :         {
    3530           3 :             for (const auto *poSubGeom : poGeom->toGeometryCollection())
    3531             :             {
    3532           2 :                 if (ContainsPole(poSubGeom, poPole))
    3533           1 :                     return true;
    3534             :             }
    3535           1 :             return false;
    3536             :         }
    3537             : 
    3538           0 :         default:
    3539           0 :             break;
    3540             :     }
    3541           0 :     return poGeom->Contains(poPole);
    3542             : }
    3543             : 
    3544             : /************************************************************************/
    3545             : /*                 TransformBeforePolarToGeographic()                   */
    3546             : /*                                                                      */
    3547             : /* Transform the geometry (by intersection), so as to cut each geometry */
    3548             : /* that crosses the pole, in 2 parts. Do also tricks for geometries     */
    3549             : /* that just touch the pole.                                            */
    3550             : /************************************************************************/
    3551             : 
    3552          12 : static std::unique_ptr<OGRGeometry> TransformBeforePolarToGeographic(
    3553             :     OGRCoordinateTransformation *poRevCT, bool bIsNorthPolar,
    3554             :     std::unique_ptr<OGRGeometry> poDstGeom, bool &bNeedPostCorrectionOut)
    3555             : {
    3556          12 :     const int nSign = (bIsNorthPolar) ? 1 : -1;
    3557             : 
    3558             :     // Does the geometry fully contains the pole ? */
    3559          12 :     double dfXPole = 0.0;
    3560          12 :     double dfYPole = nSign * 90.0;
    3561          12 :     poRevCT->Transform(1, &dfXPole, &dfYPole);
    3562          24 :     OGRPoint oPole(dfXPole, dfYPole);
    3563          12 :     const bool bContainsPole = ContainsPole(poDstGeom.get(), &oPole);
    3564             : 
    3565          12 :     const double EPS = 1e-9;
    3566             : 
    3567             :     // Does the geometry touches the pole and intersects the antimeridian ?
    3568          12 :     double dfNearPoleAntiMeridianX = 180.0;
    3569          12 :     double dfNearPoleAntiMeridianY = nSign * (90.0 - EPS);
    3570          12 :     poRevCT->Transform(1, &dfNearPoleAntiMeridianX, &dfNearPoleAntiMeridianY);
    3571             :     OGRPoint oNearPoleAntimeridian(dfNearPoleAntiMeridianX,
    3572          24 :                                    dfNearPoleAntiMeridianY);
    3573             :     const bool bContainsNearPoleAntimeridian =
    3574          12 :         CPL_TO_BOOL(poDstGeom->Contains(&oNearPoleAntimeridian));
    3575             : 
    3576             :     // Does the geometry intersects the antimeridian ?
    3577          24 :     OGRLineString oAntiMeridianLine;
    3578          12 :     oAntiMeridianLine.addPoint(180.0, nSign * (90.0 - EPS));
    3579          12 :     oAntiMeridianLine.addPoint(180.0, 0);
    3580          12 :     oAntiMeridianLine.transform(poRevCT);
    3581             :     const bool bIntersectsAntimeridian =
    3582          21 :         bContainsNearPoleAntimeridian ||
    3583           9 :         CPL_TO_BOOL(poDstGeom->Intersects(&oAntiMeridianLine));
    3584             : 
    3585             :     // Does the geometry touches the pole (but not intersect the antimeridian) ?
    3586             :     const bool bRegularTouchesPole =
    3587           7 :         !bContainsPole && !bContainsNearPoleAntimeridian &&
    3588          19 :         !bIntersectsAntimeridian && CPL_TO_BOOL(poDstGeom->Touches(&oPole));
    3589             : 
    3590             :     // Create a polygon of nearly a full hemisphere, but excluding the anti
    3591             :     // meridian and the pole.
    3592          24 :     OGRPolygon oCutter;
    3593          12 :     OGRLinearRing *poRing = new OGRLinearRing();
    3594          12 :     poRing->addPoint(180.0 - EPS, 0);
    3595          12 :     poRing->addPoint(180.0 - EPS, nSign * (90.0 - EPS));
    3596             :     // If the geometry doesn't contain the pole, then we add it to the cutter
    3597             :     // geometry, but will later remove it completely (geometry touching the
    3598             :     // pole but intersecting the antimeridian), or will replace it by 2
    3599             :     // close points (geometry touching the pole without intersecting the
    3600             :     // antimeridian)
    3601          12 :     if (!bContainsPole)
    3602           7 :         poRing->addPoint(180.0, nSign * 90);
    3603          12 :     poRing->addPoint(-180.0 + EPS, nSign * (90.0 - EPS));
    3604          12 :     poRing->addPoint(-180.0 + EPS, 0);
    3605          12 :     poRing->addPoint(180.0 - EPS, 0);
    3606          12 :     oCutter.addRingDirectly(poRing);
    3607             : 
    3608          12 :     if (oCutter.transform(poRevCT) == OGRERR_NONE &&
    3609             :         // Check that longitudes +/- 180 are continuous
    3610             :         // in the polar projection
    3611          19 :         fabs(poRing->getX(0) - poRing->getX(poRing->getNumPoints() - 2)) < 1 &&
    3612           7 :         (bContainsPole || bIntersectsAntimeridian ||
    3613           3 :          bContainsNearPoleAntimeridian || bRegularTouchesPole))
    3614             :     {
    3615          11 :         if (bContainsPole || bIntersectsAntimeridian ||
    3616             :             bContainsNearPoleAntimeridian)
    3617             :         {
    3618             :             auto poNewGeom =
    3619          18 :                 std::unique_ptr<OGRGeometry>(poDstGeom->Difference(&oCutter));
    3620           9 :             if (poNewGeom)
    3621             :             {
    3622           9 :                 if (bContainsNearPoleAntimeridian)
    3623           3 :                     RemovePoint(poNewGeom.get(), &oPole);
    3624           9 :                 poDstGeom = std::move(poNewGeom);
    3625             :             }
    3626             :         }
    3627             : 
    3628          11 :         if (bRegularTouchesPole)
    3629             :         {
    3630           2 :             AlterPole(poDstGeom.get(), &oPole);
    3631             :         }
    3632             : 
    3633          11 :         bNeedPostCorrectionOut = true;
    3634             :     }
    3635          24 :     return poDstGeom;
    3636             : }
    3637             : 
    3638             : /************************************************************************/
    3639             : /*                   IsAntimeridianProjToGeographic()                   */
    3640             : /*                                                                      */
    3641             : /* Returns true if poCT transforms from a projection that includes the  */
    3642             : /* antimeridian in a continuous way.                                    */
    3643             : /************************************************************************/
    3644             : 
    3645          16 : static bool IsAntimeridianProjToGeographic(OGRCoordinateTransformation *poCT,
    3646             :                                            OGRCoordinateTransformation *poRevCT,
    3647             :                                            OGRGeometry *poDstGeometry)
    3648             : {
    3649          16 :     const bool bBackupEmitErrors = poCT->GetEmitErrors();
    3650          16 :     poRevCT->SetEmitErrors(false);
    3651          16 :     poCT->SetEmitErrors(false);
    3652             : 
    3653             :     // Find a reasonable latitude for the geometry
    3654          16 :     OGREnvelope sEnvelope;
    3655          16 :     poDstGeometry->getEnvelope(&sEnvelope);
    3656          32 :     OGRPoint pMean(sEnvelope.MinX, (sEnvelope.MinY + sEnvelope.MaxY) / 2);
    3657          16 :     if (pMean.transform(poCT) != OGRERR_NONE)
    3658             :     {
    3659           0 :         poCT->SetEmitErrors(bBackupEmitErrors);
    3660           0 :         return false;
    3661             :     }
    3662          16 :     const double dfMeanLat = pMean.getY();
    3663             : 
    3664             :     // Check that close points on each side of the antimeridian in (long, lat)
    3665             :     // project to close points in the source projection, and check that they
    3666             :     // roundtrip correctly.
    3667          16 :     const double EPS = 1.0e-8;
    3668          16 :     double x1 = 180 - EPS;
    3669          16 :     double y1 = dfMeanLat;
    3670          16 :     double x2 = -180 + EPS;
    3671          16 :     double y2 = dfMeanLat;
    3672          48 :     if (!poRevCT->Transform(1, &x1, &y1) || !poRevCT->Transform(1, &x2, &y2) ||
    3673          30 :         GetDist(x2 - x1, y2 - y1) > 1 || !poCT->Transform(1, &x1, &y1) ||
    3674          28 :         !poCT->Transform(1, &x2, &y2) ||
    3675          46 :         GetDist(x1 - (180 - EPS), y1 - dfMeanLat) > 2 * EPS ||
    3676          14 :         GetDist(x2 - (-180 + EPS), y2 - dfMeanLat) > 2 * EPS)
    3677             :     {
    3678           2 :         poCT->SetEmitErrors(bBackupEmitErrors);
    3679           2 :         return false;
    3680             :     }
    3681             : 
    3682          14 :     poCT->SetEmitErrors(bBackupEmitErrors);
    3683             : 
    3684          14 :     return true;
    3685             : }
    3686             : 
    3687             : /************************************************************************/
    3688             : /*                      CollectPointsOnAntimeridian()                   */
    3689             : /*                                                                      */
    3690             : /* Collect points that are the intersection of the lines of the geometry*/
    3691             : /* with the antimeridian.                                               */
    3692             : /************************************************************************/
    3693             : 
    3694          21 : static void CollectPointsOnAntimeridian(OGRGeometry *poGeom,
    3695             :                                         OGRCoordinateTransformation *poCT,
    3696             :                                         OGRCoordinateTransformation *poRevCT,
    3697             :                                         std::vector<OGRRawPoint> &aoPoints)
    3698             : {
    3699          21 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3700          21 :     switch (eType)
    3701             :     {
    3702          11 :         case wkbLineString:
    3703             :         {
    3704          11 :             OGRLineString *poLS = poGeom->toLineString();
    3705          11 :             const int nNumPoints = poLS->getNumPoints();
    3706          44 :             for (int i = 0; i < nNumPoints - 1; i++)
    3707             :             {
    3708          33 :                 const double dfX = poLS->getX(i);
    3709          33 :                 const double dfY = poLS->getY(i);
    3710          33 :                 const double dfX2 = poLS->getX(i + 1);
    3711          33 :                 const double dfY2 = poLS->getY(i + 1);
    3712          33 :                 double dfXTrans = dfX;
    3713          33 :                 double dfYTrans = dfY;
    3714          33 :                 double dfX2Trans = dfX2;
    3715          33 :                 double dfY2Trans = dfY2;
    3716          33 :                 poCT->Transform(1, &dfXTrans, &dfYTrans);
    3717          33 :                 poCT->Transform(1, &dfX2Trans, &dfY2Trans);
    3718             :                 // Are we crossing the antimeridian ? (detecting by inversion of
    3719             :                 // sign of X)
    3720          33 :                 if ((dfX2 - dfX) * (dfX2Trans - dfXTrans) < 0 ||
    3721          14 :                     (dfX == dfX2 && dfX2Trans * dfXTrans < 0 &&
    3722           1 :                      fabs(fabs(dfXTrans) - 180) < 10 &&
    3723           1 :                      fabs(fabs(dfX2Trans) - 180) < 10))
    3724             :                 {
    3725          17 :                     double dfXStart = dfX;
    3726          17 :                     double dfYStart = dfY;
    3727          17 :                     double dfXEnd = dfX2;
    3728          17 :                     double dfYEnd = dfY2;
    3729          17 :                     double dfXStartTrans = dfXTrans;
    3730          17 :                     double dfXEndTrans = dfX2Trans;
    3731          17 :                     int iIter = 0;
    3732          17 :                     const double EPS = 1e-8;
    3733             :                     // Find point of the segment intersecting the antimeridian
    3734             :                     // by dichotomy
    3735         453 :                     for (;
    3736         470 :                          iIter < 50 && (fabs(fabs(dfXStartTrans) - 180) > EPS ||
    3737          25 :                                         fabs(fabs(dfXEndTrans) - 180) > EPS);
    3738             :                          ++iIter)
    3739             :                     {
    3740         453 :                         double dfXMid = (dfXStart + dfXEnd) / 2;
    3741         453 :                         double dfYMid = (dfYStart + dfYEnd) / 2;
    3742         453 :                         double dfXMidTrans = dfXMid;
    3743         453 :                         double dfYMidTrans = dfYMid;
    3744         453 :                         poCT->Transform(1, &dfXMidTrans, &dfYMidTrans);
    3745         453 :                         if ((dfXMid - dfXStart) *
    3746         453 :                                     (dfXMidTrans - dfXStartTrans) <
    3747         247 :                                 0 ||
    3748          22 :                             (dfXMid == dfXStart &&
    3749          22 :                              dfXMidTrans * dfXStartTrans < 0))
    3750             :                         {
    3751         214 :                             dfXEnd = dfXMid;
    3752         214 :                             dfYEnd = dfYMid;
    3753         214 :                             dfXEndTrans = dfXMidTrans;
    3754             :                         }
    3755             :                         else
    3756             :                         {
    3757         239 :                             dfXStart = dfXMid;
    3758         239 :                             dfYStart = dfYMid;
    3759         239 :                             dfXStartTrans = dfXMidTrans;
    3760             :                         }
    3761             :                     }
    3762          17 :                     if (iIter < 50)
    3763             :                     {
    3764          17 :                         OGRRawPoint oPoint;
    3765          17 :                         oPoint.x = (dfXStart + dfXEnd) / 2;
    3766          17 :                         oPoint.y = (dfYStart + dfYEnd) / 2;
    3767          17 :                         poCT->Transform(1, &(oPoint.x), &(oPoint.y));
    3768          17 :                         oPoint.x = 180.0;
    3769          17 :                         aoPoints.push_back(oPoint);
    3770             :                     }
    3771             :                 }
    3772             :             }
    3773          11 :             break;
    3774             :         }
    3775             : 
    3776           6 :         case wkbPolygon:
    3777             :         {
    3778           6 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3779           6 :             if (poPoly->getExteriorRing() != nullptr)
    3780             :             {
    3781           6 :                 CollectPointsOnAntimeridian(poPoly->getExteriorRing(), poCT,
    3782             :                                             poRevCT, aoPoints);
    3783           6 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3784             :                 {
    3785           0 :                     CollectPointsOnAntimeridian(poPoly->getInteriorRing(i),
    3786             :                                                 poCT, poRevCT, aoPoints);
    3787             :                 }
    3788             :             }
    3789           6 :             break;
    3790             :         }
    3791             : 
    3792           4 :         case wkbMultiLineString:
    3793             :         case wkbMultiPolygon:
    3794             :         case wkbGeometryCollection:
    3795             :         {
    3796           4 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3797           8 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3798             :             {
    3799           4 :                 CollectPointsOnAntimeridian(poGC->getGeometryRef(i), poCT,
    3800             :                                             poRevCT, aoPoints);
    3801             :             }
    3802           4 :             break;
    3803             :         }
    3804             : 
    3805           0 :         default:
    3806           0 :             break;
    3807             :     }
    3808          21 : }
    3809             : 
    3810             : /************************************************************************/
    3811             : /*                         SortPointsByAscendingY()                     */
    3812             : /************************************************************************/
    3813             : 
    3814             : struct SortPointsByAscendingY
    3815             : {
    3816           8 :     bool operator()(const OGRRawPoint &a, const OGRRawPoint &b)
    3817             :     {
    3818           8 :         return a.y < b.y;
    3819             :     }
    3820             : };
    3821             : 
    3822             : /************************************************************************/
    3823             : /*              TransformBeforeAntimeridianToGeographic()               */
    3824             : /*                                                                      */
    3825             : /* Transform the geometry (by intersection), so as to cut each geometry */
    3826             : /* that crosses the antimeridian, in 2 parts.                           */
    3827             : /************************************************************************/
    3828             : 
    3829          14 : static std::unique_ptr<OGRGeometry> TransformBeforeAntimeridianToGeographic(
    3830             :     OGRCoordinateTransformation *poCT, OGRCoordinateTransformation *poRevCT,
    3831             :     std::unique_ptr<OGRGeometry> poDstGeom, bool &bNeedPostCorrectionOut)
    3832             : {
    3833          14 :     OGREnvelope sEnvelope;
    3834          14 :     poDstGeom->getEnvelope(&sEnvelope);
    3835          28 :     OGRPoint pMean(sEnvelope.MinX, (sEnvelope.MinY + sEnvelope.MaxY) / 2);
    3836          14 :     pMean.transform(poCT);
    3837          14 :     const double dfMeanLat = pMean.getY();
    3838          14 :     pMean.setX(180.0);
    3839          14 :     pMean.setY(dfMeanLat);
    3840          14 :     pMean.transform(poRevCT);
    3841             :     // Check if the antimeridian crosses the bbox of our geometry
    3842          26 :     if (!(pMean.getX() >= sEnvelope.MinX && pMean.getY() >= sEnvelope.MinY &&
    3843          12 :           pMean.getX() <= sEnvelope.MaxX && pMean.getY() <= sEnvelope.MaxY))
    3844             :     {
    3845           3 :         return poDstGeom;
    3846             :     }
    3847             : 
    3848             :     // Collect points that are the intersection of the lines of the geometry
    3849             :     // with the antimeridian
    3850          22 :     std::vector<OGRRawPoint> aoPoints;
    3851          11 :     CollectPointsOnAntimeridian(poDstGeom.get(), poCT, poRevCT, aoPoints);
    3852          11 :     if (aoPoints.empty())
    3853           0 :         return poDstGeom;
    3854             : 
    3855             :     SortPointsByAscendingY sortFunc;
    3856          11 :     std::sort(aoPoints.begin(), aoPoints.end(), sortFunc);
    3857             : 
    3858          11 :     const double EPS = 1e-9;
    3859             : 
    3860             :     // Build a very thin polygon cutting the antimeridian at our points
    3861          11 :     OGRLinearRing *poLR = new OGRLinearRing;
    3862             :     {
    3863          11 :         double x = 180.0 - EPS;
    3864          11 :         double y = aoPoints[0].y - EPS;
    3865          11 :         poRevCT->Transform(1, &x, &y);
    3866          11 :         poLR->addPoint(x, y);
    3867             :     }
    3868          28 :     for (const auto &oPoint : aoPoints)
    3869             :     {
    3870          17 :         double x = 180.0 - EPS;
    3871          17 :         double y = oPoint.y;
    3872          17 :         poRevCT->Transform(1, &x, &y);
    3873          17 :         poLR->addPoint(x, y);
    3874             :     }
    3875             :     {
    3876          11 :         double x = 180.0 - EPS;
    3877          11 :         double y = aoPoints.back().y + EPS;
    3878          11 :         poRevCT->Transform(1, &x, &y);
    3879          11 :         poLR->addPoint(x, y);
    3880             :     }
    3881             :     {
    3882          11 :         double x = 180.0 + EPS;
    3883          11 :         double y = aoPoints.back().y + EPS;
    3884          11 :         poRevCT->Transform(1, &x, &y);
    3885          11 :         poLR->addPoint(x, y);
    3886             :     }
    3887          28 :     for (size_t i = aoPoints.size(); i > 0;)
    3888             :     {
    3889          17 :         --i;
    3890          17 :         const OGRRawPoint &oPoint = aoPoints[i];
    3891          17 :         double x = 180.0 + EPS;
    3892          17 :         double y = oPoint.y;
    3893          17 :         poRevCT->Transform(1, &x, &y);
    3894          17 :         poLR->addPoint(x, y);
    3895             :     }
    3896             :     {
    3897          11 :         double x = 180.0 + EPS;
    3898          11 :         double y = aoPoints[0].y - EPS;
    3899          11 :         poRevCT->Transform(1, &x, &y);
    3900          11 :         poLR->addPoint(x, y);
    3901             :     }
    3902          11 :     poLR->closeRings();
    3903             : 
    3904          22 :     OGRPolygon oPolyToCut;
    3905          11 :     oPolyToCut.addRingDirectly(poLR);
    3906             : 
    3907             : #if DEBUG_VERBOSE
    3908             :     char *pszWKT = NULL;
    3909             :     oPolyToCut.exportToWkt(&pszWKT);
    3910             :     CPLDebug("OGR", "Geometry to cut: %s", pszWKT);
    3911             :     CPLFree(pszWKT);
    3912             : #endif
    3913             : 
    3914             :     // Get the geometry without the antimeridian
    3915             :     auto poInter =
    3916          22 :         std::unique_ptr<OGRGeometry>(poDstGeom->Difference(&oPolyToCut));
    3917          11 :     if (poInter != nullptr)
    3918             :     {
    3919          11 :         poDstGeom = std::move(poInter);
    3920          11 :         bNeedPostCorrectionOut = true;
    3921             :     }
    3922             : 
    3923          11 :     return poDstGeom;
    3924             : }
    3925             : 
    3926             : /************************************************************************/
    3927             : /*                 SnapCoordsCloseToLatLongBounds()                     */
    3928             : /*                                                                      */
    3929             : /* This function snaps points really close to the antimerdian or poles  */
    3930             : /* to their exact longitudes/latitudes.                                 */
    3931             : /************************************************************************/
    3932             : 
    3933          80 : static void SnapCoordsCloseToLatLongBounds(OGRGeometry *poGeom)
    3934             : {
    3935          80 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3936          80 :     switch (eType)
    3937             :     {
    3938          37 :         case wkbLineString:
    3939             :         {
    3940          37 :             OGRLineString *poLS = poGeom->toLineString();
    3941          37 :             const double EPS = 1e-8;
    3942         243 :             for (int i = 0; i < poLS->getNumPoints(); i++)
    3943             :             {
    3944         412 :                 OGRPoint p;
    3945         206 :                 poLS->getPoint(i, &p);
    3946         206 :                 if (fabs(p.getX() - 180.0) < EPS)
    3947             :                 {
    3948          48 :                     p.setX(180.0);
    3949          48 :                     poLS->setPoint(i, &p);
    3950             :                 }
    3951         158 :                 else if (fabs(p.getX() - -180.0) < EPS)
    3952             :                 {
    3953          43 :                     p.setX(-180.0);
    3954          43 :                     poLS->setPoint(i, &p);
    3955             :                 }
    3956             : 
    3957         206 :                 if (fabs(p.getY() - 90.0) < EPS)
    3958             :                 {
    3959           8 :                     p.setY(90.0);
    3960           8 :                     poLS->setPoint(i, &p);
    3961             :                 }
    3962         198 :                 else if (fabs(p.getY() - -90.0) < EPS)
    3963             :                 {
    3964           2 :                     p.setY(-90.0);
    3965           2 :                     poLS->setPoint(i, &p);
    3966             :                 }
    3967             :             }
    3968          37 :             break;
    3969             :         }
    3970             : 
    3971          27 :         case wkbPolygon:
    3972             :         {
    3973          27 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3974          27 :             if (poPoly->getExteriorRing() != nullptr)
    3975             :             {
    3976          27 :                 SnapCoordsCloseToLatLongBounds(poPoly->getExteriorRing());
    3977          27 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3978             :                 {
    3979           0 :                     SnapCoordsCloseToLatLongBounds(poPoly->getInteriorRing(i));
    3980             :                 }
    3981             :             }
    3982          27 :             break;
    3983             :         }
    3984             : 
    3985          16 :         case wkbMultiLineString:
    3986             :         case wkbMultiPolygon:
    3987             :         case wkbGeometryCollection:
    3988             :         {
    3989          16 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3990          47 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3991             :             {
    3992          31 :                 SnapCoordsCloseToLatLongBounds(poGC->getGeometryRef(i));
    3993             :             }
    3994          16 :             break;
    3995             :         }
    3996             : 
    3997           0 :         default:
    3998           0 :             break;
    3999             :     }
    4000          80 : }
    4001             : 
    4002             : #endif
    4003             : 
    4004             : /************************************************************************/
    4005             : /*                  TransformWithOptionsCache::Private                  */
    4006             : /************************************************************************/
    4007             : 
    4008             : struct OGRGeometryFactory::TransformWithOptionsCache::Private
    4009             : {
    4010             :     const OGRSpatialReference *poSourceCRS = nullptr;
    4011             :     const OGRSpatialReference *poTargetCRS = nullptr;
    4012             :     const OGRCoordinateTransformation *poCT = nullptr;
    4013             :     std::unique_ptr<OGRCoordinateTransformation> poRevCT{};
    4014             :     bool bIsPolar = false;
    4015             :     bool bIsNorthPolar = false;
    4016             : 
    4017          70 :     void clear()
    4018             :     {
    4019          70 :         poSourceCRS = nullptr;
    4020          70 :         poTargetCRS = nullptr;
    4021          70 :         poCT = nullptr;
    4022          70 :         poRevCT.reset();
    4023          70 :         bIsPolar = false;
    4024          70 :         bIsNorthPolar = false;
    4025          70 :     }
    4026             : };
    4027             : 
    4028             : /************************************************************************/
    4029             : /*                     TransformWithOptionsCache()                      */
    4030             : /************************************************************************/
    4031             : 
    4032        1296 : OGRGeometryFactory::TransformWithOptionsCache::TransformWithOptionsCache()
    4033        1296 :     : d(new Private())
    4034             : {
    4035        1296 : }
    4036             : 
    4037             : /************************************************************************/
    4038             : /*                     ~TransformWithOptionsCache()                      */
    4039             : /************************************************************************/
    4040             : 
    4041        1296 : OGRGeometryFactory::TransformWithOptionsCache::~TransformWithOptionsCache()
    4042             : {
    4043        1296 : }
    4044             : 
    4045             : /************************************************************************/
    4046             : /*              isTransformWithOptionsRegularTransform()                */
    4047             : /************************************************************************/
    4048             : 
    4049             : #ifdef HAVE_GEOS
    4050          83 : static bool MayBePolarToGeographic(const OGRSpatialReference *poSourceCRS,
    4051             :                                    const OGRSpatialReference *poTargetCRS)
    4052             : {
    4053          83 :     if (poSourceCRS && poTargetCRS && poSourceCRS->IsProjected() &&
    4054          58 :         poTargetCRS->IsGeographic() &&
    4055         217 :         poTargetCRS->GetAxisMappingStrategy() == OAMS_TRADITIONAL_GIS_ORDER &&
    4056             :         // check that angular units is degree
    4057          51 :         std::fabs(poTargetCRS->GetAngularUnits(nullptr) -
    4058          51 :                   CPLAtof(SRS_UA_DEGREE_CONV)) <=
    4059          51 :             1e-8 * CPLAtof(SRS_UA_DEGREE_CONV))
    4060             :     {
    4061          51 :         double dfWestLong = 0.0;
    4062          51 :         double dfSouthLat = 0.0;
    4063          51 :         double dfEastLong = 0.0;
    4064          51 :         double dfNorthLat = 0.0;
    4065          51 :         if (poSourceCRS->GetAreaOfUse(&dfWestLong, &dfSouthLat, &dfEastLong,
    4066          90 :                                       &dfNorthLat, nullptr) &&
    4067          39 :             !(dfSouthLat == -90.0 || dfNorthLat == 90.0 ||
    4068          33 :               dfWestLong == -180.0 || dfEastLong == 180.0 ||
    4069          25 :               dfWestLong > dfEastLong))
    4070             :         {
    4071             :             // Not a global geographic CRS
    4072          25 :             return false;
    4073             :         }
    4074          26 :         return true;
    4075             :     }
    4076          32 :     return false;
    4077             : }
    4078             : #endif
    4079             : 
    4080             : //! @cond Doxygen_Suppress
    4081             : /*static */
    4082          13 : bool OGRGeometryFactory::isTransformWithOptionsRegularTransform(
    4083             :     [[maybe_unused]] const OGRSpatialReference *poSourceCRS,
    4084             :     [[maybe_unused]] const OGRSpatialReference *poTargetCRS,
    4085             :     CSLConstList papszOptions)
    4086             : {
    4087          13 :     if (CPLTestBool(CSLFetchNameValueDef(papszOptions, "WRAPDATELINE", "NO")) &&
    4088          13 :         poTargetCRS && poTargetCRS->IsGeographic())
    4089             :     {
    4090           0 :         return false;
    4091             :     }
    4092             : 
    4093             : #ifdef HAVE_GEOS
    4094          13 :     if (MayBePolarToGeographic(poSourceCRS, poTargetCRS))
    4095             :     {
    4096           1 :         return false;
    4097             :     }
    4098             : #endif
    4099             : 
    4100          12 :     return true;
    4101             : }
    4102             : 
    4103             : //! @endcond
    4104             : 
    4105             : /************************************************************************/
    4106             : /*                       transformWithOptions()                         */
    4107             : /************************************************************************/
    4108             : 
    4109             : /** Transform a geometry.
    4110             :  *
    4111             :  * This is an enhanced version of OGRGeometry::Transform().
    4112             :  *
    4113             :  * When reprojecting geometries from a Polar Stereographic projection or a
    4114             :  * projection naturally crossing the antimeridian (like UTM Zone 60) to a
    4115             :  * geographic CRS, it will cut geometries along the antimeridian. So a
    4116             :  * LineString might be returned as a MultiLineString.
    4117             :  *
    4118             :  * The WRAPDATELINE=YES option might be specified for circumstances to correct
    4119             :  * geometries that incorrectly go from a longitude on a side of the antimeridian
    4120             :  * to the other side, like a LINESTRING(-179 0,179 0) will be transformed to
    4121             :  * a MULTILINESTRING ((-179 0,-180 0),(180 0,179 0)). For that use case, hCT
    4122             :  * might be NULL.
    4123             :  *
    4124             :  * Supported options in papszOptions are:
    4125             :  * <ul>
    4126             :  * <li>WRAPDATELINE=YES</li>
    4127             :  * <li>DATELINEOFFSET=longitude_gap_in_degree. Defaults to 10.</li>
    4128             :  * </ul>
    4129             :  *
    4130             :  * This is the same as the C function OGR_GeomTransformer_Transform().
    4131             :  *
    4132             :  * @param poSrcGeom source geometry
    4133             :  * @param poCT coordinate transformation object, or NULL.
    4134             :  * @param papszOptions NULL terminated list of options, or NULL.
    4135             :  * @param cache Cache. May increase performance if persisted between invocations
    4136             :  * @return (new) transformed geometry.
    4137             :  */
    4138         636 : OGRGeometry *OGRGeometryFactory::transformWithOptions(
    4139             :     const OGRGeometry *poSrcGeom, OGRCoordinateTransformation *poCT,
    4140             :     char **papszOptions, CPL_UNUSED const TransformWithOptionsCache &cache)
    4141             : {
    4142        1272 :     auto poDstGeom = std::unique_ptr<OGRGeometry>(poSrcGeom->clone());
    4143         636 :     if (poCT)
    4144             :     {
    4145             : #ifdef HAVE_GEOS
    4146         601 :         bool bNeedPostCorrection = false;
    4147         601 :         const auto poSourceCRS = poCT->GetSourceCS();
    4148         601 :         const auto poTargetCRS = poCT->GetTargetCS();
    4149         601 :         const auto eSrcGeomType = wkbFlatten(poSrcGeom->getGeometryType());
    4150             :         // Check if we are transforming from projected coordinates to
    4151             :         // geographic coordinates, with a chance that there might be polar or
    4152             :         // anti-meridian discontinuities. If so, create the inverse transform.
    4153         782 :         if (eSrcGeomType != wkbPoint && eSrcGeomType != wkbMultiPoint &&
    4154         181 :             (poSourceCRS != cache.d->poSourceCRS ||
    4155         111 :              poTargetCRS != cache.d->poTargetCRS || poCT != cache.d->poCT))
    4156             :         {
    4157          70 :             cache.d->clear();
    4158          70 :             cache.d->poSourceCRS = poSourceCRS;
    4159          70 :             cache.d->poTargetCRS = poTargetCRS;
    4160          70 :             cache.d->poCT = poCT;
    4161          70 :             if (MayBePolarToGeographic(poSourceCRS, poTargetCRS))
    4162             :             {
    4163          25 :                 cache.d->poRevCT.reset(OGRCreateCoordinateTransformation(
    4164             :                     poTargetCRS, poSourceCRS));
    4165          25 :                 cache.d->bIsNorthPolar = false;
    4166          25 :                 cache.d->bIsPolar = false;
    4167          25 :                 cache.d->poRevCT.reset(poCT->GetInverse());
    4168          75 :                 if (cache.d->poRevCT &&
    4169          25 :                     IsPolarToGeographic(poCT, cache.d->poRevCT.get(),
    4170          50 :                                         cache.d->bIsNorthPolar))
    4171             :                 {
    4172          11 :                     cache.d->bIsPolar = true;
    4173             :                 }
    4174             :             }
    4175             :         }
    4176             : 
    4177         601 :         if (auto poRevCT = cache.d->poRevCT.get())
    4178             :         {
    4179          28 :             if (cache.d->bIsPolar)
    4180             :             {
    4181          24 :                 poDstGeom = TransformBeforePolarToGeographic(
    4182          24 :                     poRevCT, cache.d->bIsNorthPolar, std::move(poDstGeom),
    4183          12 :                     bNeedPostCorrection);
    4184             :             }
    4185          16 :             else if (IsAntimeridianProjToGeographic(poCT, poRevCT,
    4186             :                                                     poDstGeom.get()))
    4187             :             {
    4188          28 :                 poDstGeom = TransformBeforeAntimeridianToGeographic(
    4189          28 :                     poCT, poRevCT, std::move(poDstGeom), bNeedPostCorrection);
    4190             :             }
    4191             :         }
    4192             : #endif
    4193         601 :         OGRErr eErr = poDstGeom->transform(poCT);
    4194         601 :         if (eErr != OGRERR_NONE)
    4195             :         {
    4196           4 :             return nullptr;
    4197             :         }
    4198             : #ifdef HAVE_GEOS
    4199         597 :         if (bNeedPostCorrection)
    4200             :         {
    4201          22 :             SnapCoordsCloseToLatLongBounds(poDstGeom.get());
    4202             :         }
    4203             : #endif
    4204             :     }
    4205             : 
    4206         632 :     if (CPLTestBool(CSLFetchNameValueDef(papszOptions, "WRAPDATELINE", "NO")))
    4207             :     {
    4208          55 :         const auto poDstGeomSRS = poDstGeom->getSpatialReference();
    4209          55 :         if (poDstGeomSRS && !poDstGeomSRS->IsGeographic())
    4210             :         {
    4211           1 :             CPLDebugOnce(
    4212             :                 "OGR", "WRAPDATELINE is without effect when reprojecting to a "
    4213             :                        "non-geographic CRS");
    4214           1 :             return poDstGeom.release();
    4215             :         }
    4216             :         // TODO and we should probably also test that the axis order + data axis
    4217             :         // mapping is long-lat...
    4218             :         const OGRwkbGeometryType eType =
    4219          54 :             wkbFlatten(poDstGeom->getGeometryType());
    4220          54 :         if (eType == wkbPoint)
    4221             :         {
    4222           9 :             OGRPoint *poDstPoint = poDstGeom->toPoint();
    4223           9 :             WrapPointDateLine(poDstPoint);
    4224             :         }
    4225          45 :         else if (eType == wkbMultiPoint)
    4226             :         {
    4227           5 :             for (auto *poDstPoint : *(poDstGeom->toMultiPoint()))
    4228             :             {
    4229           4 :                 WrapPointDateLine(poDstPoint);
    4230             :             }
    4231             :         }
    4232             :         else
    4233             :         {
    4234          44 :             OGREnvelope sEnvelope;
    4235          44 :             poDstGeom->getEnvelope(&sEnvelope);
    4236          44 :             if (sEnvelope.MinX >= -360.0 && sEnvelope.MaxX <= -180.0)
    4237           2 :                 AddOffsetToLon(poDstGeom.get(), 360.0);
    4238          42 :             else if (sEnvelope.MinX >= 180.0 && sEnvelope.MaxX <= 360.0)
    4239           2 :                 AddOffsetToLon(poDstGeom.get(), -360.0);
    4240             :             else
    4241             :             {
    4242             :                 OGRwkbGeometryType eNewType;
    4243          40 :                 if (eType == wkbPolygon || eType == wkbMultiPolygon)
    4244          29 :                     eNewType = wkbMultiPolygon;
    4245          11 :                 else if (eType == wkbLineString || eType == wkbMultiLineString)
    4246          10 :                     eNewType = wkbMultiLineString;
    4247             :                 else
    4248           1 :                     eNewType = wkbGeometryCollection;
    4249             : 
    4250             :                 auto poMulti = std::unique_ptr<OGRGeometryCollection>(
    4251          80 :                     createGeometry(eNewType)->toGeometryCollection());
    4252             : 
    4253          40 :                 double dfDateLineOffset = CPLAtofM(
    4254             :                     CSLFetchNameValueDef(papszOptions, "DATELINEOFFSET", "10"));
    4255          40 :                 if (dfDateLineOffset <= 0.0 || dfDateLineOffset >= 360.0)
    4256           0 :                     dfDateLineOffset = 10.0;
    4257             : 
    4258          40 :                 CutGeometryOnDateLineAndAddToMulti(
    4259          40 :                     poMulti.get(), poDstGeom.get(), dfDateLineOffset);
    4260             : 
    4261          40 :                 if (poMulti->getNumGeometries() == 0)
    4262             :                 {
    4263             :                     // do nothing
    4264             :                 }
    4265          41 :                 else if (poMulti->getNumGeometries() == 1 &&
    4266           1 :                          (eType == wkbPolygon || eType == wkbLineString))
    4267             :                 {
    4268          13 :                     poDstGeom = poMulti->stealGeometry(0);
    4269             :                 }
    4270             :                 else
    4271             :                 {
    4272          27 :                     poDstGeom = std::move(poMulti);
    4273             :                 }
    4274             :             }
    4275             :         }
    4276             :     }
    4277             : 
    4278         631 :     return poDstGeom.release();
    4279             : }
    4280             : 
    4281             : /************************************************************************/
    4282             : /*                         OGRGeomTransformer()                         */
    4283             : /************************************************************************/
    4284             : 
    4285             : struct OGRGeomTransformer
    4286             : {
    4287             :     std::unique_ptr<OGRCoordinateTransformation> poCT{};
    4288             :     OGRGeometryFactory::TransformWithOptionsCache cache{};
    4289             :     CPLStringList aosOptions{};
    4290             : 
    4291          10 :     OGRGeomTransformer() = default;
    4292             :     OGRGeomTransformer(const OGRGeomTransformer &) = delete;
    4293             :     OGRGeomTransformer &operator=(const OGRGeomTransformer &) = delete;
    4294             : };
    4295             : 
    4296             : /************************************************************************/
    4297             : /*                     OGR_GeomTransformer_Create()                     */
    4298             : /************************************************************************/
    4299             : 
    4300             : /** Create a geometry transformer.
    4301             :  *
    4302             :  * This is an enhanced version of OGR_G_Transform().
    4303             :  *
    4304             :  * When reprojecting geometries from a Polar Stereographic projection or a
    4305             :  * projection naturally crossing the antimeridian (like UTM Zone 60) to a
    4306             :  * geographic CRS, it will cut geometries along the antimeridian. So a
    4307             :  * LineString might be returned as a MultiLineString.
    4308             :  *
    4309             :  * The WRAPDATELINE=YES option might be specified for circumstances to correct
    4310             :  * geometries that incorrectly go from a longitude on a side of the antimeridian
    4311             :  * to the other side, like a LINESTRING(-179 0,179 0) will be transformed to
    4312             :  * a MULTILINESTRING ((-179 0,-180 0),(180 0,179 0)). For that use case, hCT
    4313             :  * might be NULL.
    4314             :  *
    4315             :  * Supported options in papszOptions are:
    4316             :  * <ul>
    4317             :  * <li>WRAPDATELINE=YES</li>
    4318             :  * <li>DATELINEOFFSET=longitude_gap_in_degree. Defaults to 10.</li>
    4319             :  * </ul>
    4320             :  *
    4321             :  * This is the same as the C++ method OGRGeometryFactory::transformWithOptions().
    4322             : 
    4323             :  * @param hCT Coordinate transformation object (will be cloned) or NULL.
    4324             :  * @param papszOptions NULL terminated list of options, or NULL.
    4325             :  * @return transformer object to free with OGR_GeomTransformer_Destroy()
    4326             :  * @since GDAL 3.1
    4327             :  */
    4328          10 : OGRGeomTransformerH OGR_GeomTransformer_Create(OGRCoordinateTransformationH hCT,
    4329             :                                                CSLConstList papszOptions)
    4330             : {
    4331          10 :     OGRGeomTransformer *transformer = new OGRGeomTransformer;
    4332          10 :     if (hCT)
    4333             :     {
    4334           7 :         transformer->poCT.reset(
    4335           7 :             OGRCoordinateTransformation::FromHandle(hCT)->Clone());
    4336             :     }
    4337          10 :     transformer->aosOptions.Assign(CSLDuplicate(papszOptions));
    4338          10 :     return transformer;
    4339             : }
    4340             : 
    4341             : /************************************************************************/
    4342             : /*                     OGR_GeomTransformer_Transform()                  */
    4343             : /************************************************************************/
    4344             : 
    4345             : /** Transforms a geometry.
    4346             :  *
    4347             :  * @param hTransformer transformer object.
    4348             :  * @param hGeom Source geometry.
    4349             :  * @return a new geometry (or NULL) to destroy with OGR_G_DestroyGeometry()
    4350             :  * @since GDAL 3.1
    4351             :  */
    4352          10 : OGRGeometryH OGR_GeomTransformer_Transform(OGRGeomTransformerH hTransformer,
    4353             :                                            OGRGeometryH hGeom)
    4354             : {
    4355          10 :     VALIDATE_POINTER1(hTransformer, "OGR_GeomTransformer_Transform", nullptr);
    4356          10 :     VALIDATE_POINTER1(hGeom, "OGR_GeomTransformer_Transform", nullptr);
    4357             : 
    4358          20 :     return OGRGeometry::ToHandle(OGRGeometryFactory::transformWithOptions(
    4359          10 :         OGRGeometry::FromHandle(hGeom), hTransformer->poCT.get(),
    4360          20 :         hTransformer->aosOptions.List(), hTransformer->cache));
    4361             : }
    4362             : 
    4363             : /************************************************************************/
    4364             : /*                      OGR_GeomTransformer_Destroy()                   */
    4365             : /************************************************************************/
    4366             : 
    4367             : /** Destroy a geometry transformer allocated with OGR_GeomTransformer_Create()
    4368             :  *
    4369             :  * @param hTransformer transformer object.
    4370             :  * @since GDAL 3.1
    4371             :  */
    4372          10 : void OGR_GeomTransformer_Destroy(OGRGeomTransformerH hTransformer)
    4373             : {
    4374          10 :     delete hTransformer;
    4375          10 : }
    4376             : 
    4377             : /************************************************************************/
    4378             : /*                OGRGeometryFactory::GetDefaultArcStepSize()           */
    4379             : /************************************************************************/
    4380             : 
    4381             : /** Return the default value of the angular step used when stroking curves
    4382             :  * as lines. Defaults to 4 degrees.
    4383             :  * Can be modified by setting the OGR_ARC_STEPSIZE configuration option.
    4384             :  * Valid values are in [1e-2, 180] degree range.
    4385             :  * @since 3.11
    4386             :  */
    4387             : 
    4388             : /* static */
    4389        4420 : double OGRGeometryFactory::GetDefaultArcStepSize()
    4390             : {
    4391        4420 :     const double dfVal = CPLAtofM(CPLGetConfigOption("OGR_ARC_STEPSIZE", "4"));
    4392        4420 :     constexpr double MIN_VAL = 1e-2;
    4393        4420 :     if (dfVal < MIN_VAL)
    4394             :     {
    4395           1 :         CPLErrorOnce(CE_Warning, CPLE_AppDefined,
    4396             :                      "Too small value for OGR_ARC_STEPSIZE. Clamping it to %f",
    4397             :                      MIN_VAL);
    4398           1 :         return MIN_VAL;
    4399             :     }
    4400        4419 :     constexpr double MAX_VAL = 180;
    4401        4419 :     if (dfVal > MAX_VAL)
    4402             :     {
    4403           1 :         CPLErrorOnce(CE_Warning, CPLE_AppDefined,
    4404             :                      "Too large value for OGR_ARC_STEPSIZE. Clamping it to %f",
    4405             :                      MAX_VAL);
    4406           1 :         return MAX_VAL;
    4407             :     }
    4408        4418 :     return dfVal;
    4409             : }
    4410             : 
    4411             : /************************************************************************/
    4412             : /*                              DISTANCE()                              */
    4413             : /************************************************************************/
    4414             : 
    4415      310650 : static inline double DISTANCE(double x1, double y1, double x2, double y2)
    4416             : {
    4417      310650 :     return sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
    4418             : }
    4419             : 
    4420             : /************************************************************************/
    4421             : /*                        approximateArcAngles()                        */
    4422             : /************************************************************************/
    4423             : 
    4424             : /**
    4425             :  * Stroke arc to linestring.
    4426             :  *
    4427             :  * Stroke an arc of a circle to a linestring based on a center
    4428             :  * point, radius, start angle and end angle, all angles in degrees.
    4429             :  *
    4430             :  * If the dfMaxAngleStepSizeDegrees is zero, then a default value will be
    4431             :  * used.  This is currently 4 degrees unless the user has overridden the
    4432             :  * value with the OGR_ARC_STEPSIZE configuration variable.
    4433             :  *
    4434             :  * If the OGR_ARC_MAX_GAP configuration variable is set, the straight-line
    4435             :  * distance between adjacent pairs of interpolated points will be limited to
    4436             :  * the specified distance. If the distance between a pair of points exceeds
    4437             :  * this maximum, additional points are interpolated between the two points.
    4438             :  *
    4439             :  * @see CPLSetConfigOption()
    4440             :  *
    4441             :  * @param dfCenterX center X
    4442             :  * @param dfCenterY center Y
    4443             :  * @param dfZ center Z
    4444             :  * @param dfPrimaryRadius X radius of ellipse.
    4445             :  * @param dfSecondaryRadius Y radius of ellipse.
    4446             :  * @param dfRotation rotation of the ellipse clockwise.
    4447             :  * @param dfStartAngle angle to first point on arc (clockwise of X-positive)
    4448             :  * @param dfEndAngle angle to last point on arc (clockwise of X-positive)
    4449             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    4450             :  * arc, zero to use the default setting.
    4451             :  * @param bUseMaxGap Optional: whether to honor OGR_ARC_MAX_GAP.
    4452             :  *
    4453             :  * @return OGRLineString geometry representing an approximation of the arc.
    4454             :  *
    4455             :  */
    4456             : 
    4457         118 : OGRGeometry *OGRGeometryFactory::approximateArcAngles(
    4458             :     double dfCenterX, double dfCenterY, double dfZ, double dfPrimaryRadius,
    4459             :     double dfSecondaryRadius, double dfRotation, double dfStartAngle,
    4460             :     double dfEndAngle, double dfMaxAngleStepSizeDegrees,
    4461             :     const bool bUseMaxGap /* = false */)
    4462             : 
    4463             : {
    4464         118 :     OGRLineString *poLine = new OGRLineString();
    4465         118 :     const double dfRotationRadians = dfRotation * M_PI / 180.0;
    4466             : 
    4467             :     // Support default arc step setting.
    4468         118 :     if (dfMaxAngleStepSizeDegrees < 1e-6)
    4469             :     {
    4470         117 :         dfMaxAngleStepSizeDegrees = OGRGeometryFactory::GetDefaultArcStepSize();
    4471             :     }
    4472             : 
    4473             :     // Determine maximum interpolation gap. This is the largest straight-line
    4474             :     // distance allowed between pairs of interpolated points. Default zero,
    4475             :     // meaning no gap.
    4476             :     // coverity[tainted_data]
    4477             :     const double dfMaxInterpolationGap =
    4478         118 :         bUseMaxGap ? CPLAtofM(CPLGetConfigOption("OGR_ARC_MAX_GAP", "0")) : 0.0;
    4479             : 
    4480             :     // Is this a full circle?
    4481         118 :     const bool bIsFullCircle = fabs(dfEndAngle - dfStartAngle) == 360.0;
    4482             : 
    4483             :     // Switch direction.
    4484         118 :     dfStartAngle *= -1;
    4485         118 :     dfEndAngle *= -1;
    4486             : 
    4487             :     // Figure out the number of slices to make this into.
    4488             :     int nVertexCount =
    4489         236 :         std::max(2, static_cast<int>(ceil(fabs(dfEndAngle - dfStartAngle) /
    4490         118 :                                           dfMaxAngleStepSizeDegrees) +
    4491         118 :                                      1));
    4492         118 :     const double dfSlice = (dfEndAngle - dfStartAngle) / (nVertexCount - 1);
    4493             : 
    4494             :     // If it is a full circle we will work out the last point separately.
    4495         118 :     if (bIsFullCircle)
    4496             :     {
    4497          52 :         nVertexCount--;
    4498             :     }
    4499             : 
    4500             :     /* -------------------------------------------------------------------- */
    4501             :     /*      Compute the interpolated points.                                */
    4502             :     /* -------------------------------------------------------------------- */
    4503         118 :     double dfLastX = 0.0;
    4504         118 :     double dfLastY = 0.0;
    4505         118 :     int nTotalAddPoints = 0;
    4506        7071 :     for (int iPoint = 0; iPoint < nVertexCount; iPoint++)
    4507             :     {
    4508        6953 :         const double dfAngleOnEllipse =
    4509        6953 :             (dfStartAngle + iPoint * dfSlice) * M_PI / 180.0;
    4510             : 
    4511             :         // Compute position on the unrotated ellipse.
    4512        6953 :         const double dfEllipseX = cos(dfAngleOnEllipse) * dfPrimaryRadius;
    4513        6953 :         const double dfEllipseY = sin(dfAngleOnEllipse) * dfSecondaryRadius;
    4514             : 
    4515             :         // Is this point too far from the previous point?
    4516        6953 :         if (iPoint && dfMaxInterpolationGap != 0.0)
    4517             :         {
    4518             :             const double dfDistFromLast =
    4519           1 :                 DISTANCE(dfLastX, dfLastY, dfEllipseX, dfEllipseY);
    4520             : 
    4521           1 :             if (dfDistFromLast > dfMaxInterpolationGap)
    4522             :             {
    4523           1 :                 const int nAddPoints =
    4524           1 :                     static_cast<int>(dfDistFromLast / dfMaxInterpolationGap);
    4525           1 :                 const double dfAddSlice = dfSlice / (nAddPoints + 1);
    4526             : 
    4527             :                 // Interpolate additional points
    4528           3 :                 for (int iAddPoint = 0; iAddPoint < nAddPoints; iAddPoint++)
    4529             :                 {
    4530           2 :                     const double dfAddAngleOnEllipse =
    4531           2 :                         (dfStartAngle + (iPoint - 1) * dfSlice +
    4532           2 :                          (iAddPoint + 1) * dfAddSlice) *
    4533             :                         (M_PI / 180.0);
    4534             : 
    4535           2 :                     poLine->setPoint(
    4536           2 :                         iPoint + nTotalAddPoints + iAddPoint,
    4537           2 :                         cos(dfAddAngleOnEllipse) * dfPrimaryRadius,
    4538           2 :                         sin(dfAddAngleOnEllipse) * dfSecondaryRadius, dfZ);
    4539             :                 }
    4540             : 
    4541           1 :                 nTotalAddPoints += nAddPoints;
    4542             :             }
    4543             :         }
    4544             : 
    4545        6953 :         poLine->setPoint(iPoint + nTotalAddPoints, dfEllipseX, dfEllipseY, dfZ);
    4546        6953 :         dfLastX = dfEllipseX;
    4547        6953 :         dfLastY = dfEllipseY;
    4548             :     }
    4549             : 
    4550             :     /* -------------------------------------------------------------------- */
    4551             :     /*      Rotate and translate the ellipse.                               */
    4552             :     /* -------------------------------------------------------------------- */
    4553         118 :     nVertexCount = poLine->getNumPoints();
    4554        7073 :     for (int iPoint = 0; iPoint < nVertexCount; iPoint++)
    4555             :     {
    4556        6955 :         const double dfEllipseX = poLine->getX(iPoint);
    4557        6955 :         const double dfEllipseY = poLine->getY(iPoint);
    4558             : 
    4559             :         // Rotate this position around the center of the ellipse.
    4560        6955 :         const double dfArcX = dfCenterX + dfEllipseX * cos(dfRotationRadians) +
    4561        6955 :                               dfEllipseY * sin(dfRotationRadians);
    4562        6955 :         const double dfArcY = dfCenterY - dfEllipseX * sin(dfRotationRadians) +
    4563        6955 :                               dfEllipseY * cos(dfRotationRadians);
    4564             : 
    4565        6955 :         poLine->setPoint(iPoint, dfArcX, dfArcY, dfZ);
    4566             :     }
    4567             : 
    4568             :     /* -------------------------------------------------------------------- */
    4569             :     /*      If we're asked to make a full circle, ensure the start and      */
    4570             :     /*      end points coincide exactly, in spite of any rounding error.    */
    4571             :     /* -------------------------------------------------------------------- */
    4572         118 :     if (bIsFullCircle)
    4573             :     {
    4574         104 :         OGRPoint oPoint;
    4575          52 :         poLine->getPoint(0, &oPoint);
    4576          52 :         poLine->setPoint(nVertexCount, &oPoint);
    4577             :     }
    4578             : 
    4579         118 :     return poLine;
    4580             : }
    4581             : 
    4582             : /************************************************************************/
    4583             : /*                     OGR_G_ApproximateArcAngles()                     */
    4584             : /************************************************************************/
    4585             : 
    4586             : /**
    4587             :  * Stroke arc to linestring.
    4588             :  *
    4589             :  * Stroke an arc of a circle to a linestring based on a center
    4590             :  * point, radius, start angle and end angle, all angles in degrees.
    4591             :  *
    4592             :  * If the dfMaxAngleStepSizeDegrees is zero, then a default value will be
    4593             :  * used.  This is currently 4 degrees unless the user has overridden the
    4594             :  * value with the OGR_ARC_STEPSIZE configuration variable.
    4595             :  *
    4596             :  * @see CPLSetConfigOption()
    4597             :  *
    4598             :  * @param dfCenterX center X
    4599             :  * @param dfCenterY center Y
    4600             :  * @param dfZ center Z
    4601             :  * @param dfPrimaryRadius X radius of ellipse.
    4602             :  * @param dfSecondaryRadius Y radius of ellipse.
    4603             :  * @param dfRotation rotation of the ellipse clockwise.
    4604             :  * @param dfStartAngle angle to first point on arc (clockwise of X-positive)
    4605             :  * @param dfEndAngle angle to last point on arc (clockwise of X-positive)
    4606             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    4607             :  * arc, zero to use the default setting.
    4608             :  *
    4609             :  * @return OGRLineString geometry representing an approximation of the arc.
    4610             :  *
    4611             :  */
    4612             : 
    4613           1 : OGRGeometryH CPL_DLL OGR_G_ApproximateArcAngles(
    4614             :     double dfCenterX, double dfCenterY, double dfZ, double dfPrimaryRadius,
    4615             :     double dfSecondaryRadius, double dfRotation, double dfStartAngle,
    4616             :     double dfEndAngle, double dfMaxAngleStepSizeDegrees)
    4617             : 
    4618             : {
    4619           1 :     return OGRGeometry::ToHandle(OGRGeometryFactory::approximateArcAngles(
    4620             :         dfCenterX, dfCenterY, dfZ, dfPrimaryRadius, dfSecondaryRadius,
    4621           1 :         dfRotation, dfStartAngle, dfEndAngle, dfMaxAngleStepSizeDegrees));
    4622             : }
    4623             : 
    4624             : /************************************************************************/
    4625             : /*                           forceToLineString()                        */
    4626             : /************************************************************************/
    4627             : 
    4628             : /**
    4629             :  * \brief Convert to line string.
    4630             :  *
    4631             :  * Tries to force the provided geometry to be a line string.  This nominally
    4632             :  * effects a change on multilinestrings.
    4633             :  * For polygons or curvepolygons that have a single exterior ring,
    4634             :  * it will return the ring. For circular strings or compound curves, it will
    4635             :  * return an approximated line string.
    4636             :  *
    4637             :  * The passed in geometry is
    4638             :  * consumed and a new one returned (or potentially the same one).
    4639             :  *
    4640             :  * @param poGeom the input geometry - ownership is passed to the method.
    4641             :  * @param bOnlyInOrder flag that, if set to FALSE, indicate that the order of
    4642             :  *                     points in a linestring might be reversed if it enables
    4643             :  *                     to match the extremity of another linestring. If set
    4644             :  *                     to TRUE, the start of a linestring must match the end
    4645             :  *                     of another linestring.
    4646             :  * @return new geometry.
    4647             :  */
    4648             : 
    4649         187 : OGRGeometry *OGRGeometryFactory::forceToLineString(OGRGeometry *poGeom,
    4650             :                                                    bool bOnlyInOrder)
    4651             : 
    4652             : {
    4653         187 :     if (poGeom == nullptr)
    4654           2 :         return nullptr;
    4655             : 
    4656         185 :     const OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    4657             : 
    4658             :     /* -------------------------------------------------------------------- */
    4659             :     /*      If this is already a LineString, nothing to do                  */
    4660             :     /* -------------------------------------------------------------------- */
    4661         185 :     if (eGeomType == wkbLineString)
    4662             :     {
    4663             :         // Except if it is a linearring.
    4664          25 :         poGeom = OGRCurve::CastToLineString(poGeom->toCurve());
    4665             : 
    4666          25 :         return poGeom;
    4667             :     }
    4668             : 
    4669             :     /* -------------------------------------------------------------------- */
    4670             :     /*      If it is a polygon with a single ring, return it                 */
    4671             :     /* -------------------------------------------------------------------- */
    4672         160 :     if (eGeomType == wkbPolygon || eGeomType == wkbCurvePolygon)
    4673             :     {
    4674          30 :         OGRCurvePolygon *poCP = poGeom->toCurvePolygon();
    4675          30 :         if (poCP->getNumInteriorRings() == 0)
    4676             :         {
    4677          28 :             OGRCurve *poRing = poCP->stealExteriorRingCurve();
    4678          28 :             delete poCP;
    4679          28 :             return forceToLineString(poRing);
    4680             :         }
    4681           2 :         return poGeom;
    4682             :     }
    4683             : 
    4684             :     /* -------------------------------------------------------------------- */
    4685             :     /*      If it is a curve line, call CurveToLine()                        */
    4686             :     /* -------------------------------------------------------------------- */
    4687         130 :     if (eGeomType == wkbCircularString || eGeomType == wkbCompoundCurve)
    4688             :     {
    4689          79 :         OGRGeometry *poNewGeom = poGeom->toCurve()->CurveToLine();
    4690          79 :         delete poGeom;
    4691          79 :         return poNewGeom;
    4692             :     }
    4693             : 
    4694          51 :     if (eGeomType != wkbGeometryCollection && eGeomType != wkbMultiLineString &&
    4695             :         eGeomType != wkbMultiCurve)
    4696          20 :         return poGeom;
    4697             : 
    4698             :     // Build an aggregated linestring from all the linestrings in the container.
    4699          31 :     OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    4700          31 :     if (poGeom->hasCurveGeometry())
    4701             :     {
    4702             :         OGRGeometryCollection *poNewGC =
    4703           7 :             poGC->getLinearGeometry()->toGeometryCollection();
    4704           7 :         delete poGC;
    4705           7 :         poGC = poNewGC;
    4706             :     }
    4707             : 
    4708          31 :     if (poGC->getNumGeometries() == 0)
    4709             :     {
    4710           3 :         poGeom = new OGRLineString();
    4711           3 :         poGeom->assignSpatialReference(poGC->getSpatialReference());
    4712           3 :         delete poGC;
    4713           3 :         return poGeom;
    4714             :     }
    4715             : 
    4716          28 :     int iGeom0 = 0;
    4717          69 :     while (iGeom0 < poGC->getNumGeometries())
    4718             :     {
    4719          41 :         if (wkbFlatten(poGC->getGeometryRef(iGeom0)->getGeometryType()) !=
    4720             :             wkbLineString)
    4721             :         {
    4722          12 :             iGeom0++;
    4723          26 :             continue;
    4724             :         }
    4725             : 
    4726             :         OGRLineString *poLineString0 =
    4727          29 :             poGC->getGeometryRef(iGeom0)->toLineString();
    4728          29 :         if (poLineString0->getNumPoints() < 2)
    4729             :         {
    4730          14 :             iGeom0++;
    4731          14 :             continue;
    4732             :         }
    4733             : 
    4734          30 :         OGRPoint pointStart0;
    4735          15 :         poLineString0->StartPoint(&pointStart0);
    4736          30 :         OGRPoint pointEnd0;
    4737          15 :         poLineString0->EndPoint(&pointEnd0);
    4738             : 
    4739          15 :         int iGeom1 = iGeom0 + 1;  // Used after for.
    4740          17 :         for (; iGeom1 < poGC->getNumGeometries(); iGeom1++)
    4741             :         {
    4742           6 :             if (wkbFlatten(poGC->getGeometryRef(iGeom1)->getGeometryType()) !=
    4743             :                 wkbLineString)
    4744           1 :                 continue;
    4745             : 
    4746             :             OGRLineString *poLineString1 =
    4747           6 :                 poGC->getGeometryRef(iGeom1)->toLineString();
    4748           6 :             if (poLineString1->getNumPoints() < 2)
    4749           1 :                 continue;
    4750             : 
    4751           5 :             OGRPoint pointStart1;
    4752           5 :             poLineString1->StartPoint(&pointStart1);
    4753           5 :             OGRPoint pointEnd1;
    4754           5 :             poLineString1->EndPoint(&pointEnd1);
    4755             : 
    4756           5 :             if (!bOnlyInOrder && (pointEnd0.Equals(&pointEnd1) ||
    4757           0 :                                   pointStart0.Equals(&pointStart1)))
    4758             :             {
    4759           0 :                 poLineString1->reversePoints();
    4760           0 :                 poLineString1->StartPoint(&pointStart1);
    4761           0 :                 poLineString1->EndPoint(&pointEnd1);
    4762             :             }
    4763             : 
    4764           5 :             if (pointEnd0.Equals(&pointStart1))
    4765             :             {
    4766           4 :                 poLineString0->addSubLineString(poLineString1, 1);
    4767           4 :                 poGC->removeGeometry(iGeom1);
    4768           4 :                 break;
    4769             :             }
    4770             : 
    4771           1 :             if (pointEnd1.Equals(&pointStart0))
    4772             :             {
    4773           0 :                 poLineString1->addSubLineString(poLineString0, 1);
    4774           0 :                 poGC->removeGeometry(iGeom0);
    4775           0 :                 break;
    4776             :             }
    4777             :         }
    4778             : 
    4779          15 :         if (iGeom1 == poGC->getNumGeometries())
    4780             :         {
    4781          14 :             iGeom0++;
    4782             :         }
    4783             :     }
    4784             : 
    4785          28 :     if (poGC->getNumGeometries() == 1)
    4786             :     {
    4787          20 :         OGRGeometry *poSingleGeom = poGC->getGeometryRef(0);
    4788          20 :         poGC->removeGeometry(0, FALSE);
    4789          20 :         delete poGC;
    4790             : 
    4791          20 :         return poSingleGeom;
    4792             :     }
    4793             : 
    4794           8 :     return poGC;
    4795             : }
    4796             : 
    4797             : /************************************************************************/
    4798             : /*                      OGR_G_ForceToLineString()                       */
    4799             : /************************************************************************/
    4800             : 
    4801             : /**
    4802             :  * \brief Convert to line string.
    4803             :  *
    4804             :  * This function is the same as the C++ method
    4805             :  * OGRGeometryFactory::forceToLineString().
    4806             :  *
    4807             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    4808             :  * @return the converted geometry (ownership to caller).
    4809             :  *
    4810             :  * @since GDAL/OGR 1.10.0
    4811             :  */
    4812             : 
    4813          60 : OGRGeometryH OGR_G_ForceToLineString(OGRGeometryH hGeom)
    4814             : 
    4815             : {
    4816          60 :     return OGRGeometry::ToHandle(
    4817          60 :         OGRGeometryFactory::forceToLineString(OGRGeometry::FromHandle(hGeom)));
    4818             : }
    4819             : 
    4820             : /************************************************************************/
    4821             : /*                           forceTo()                                  */
    4822             : /************************************************************************/
    4823             : 
    4824             : /**
    4825             :  * \brief Convert to another geometry type
    4826             :  *
    4827             :  * Tries to force the provided geometry to the specified geometry type.
    4828             :  *
    4829             :  * It can promote 'single' geometry type to their corresponding collection type
    4830             :  * (see OGR_GT_GetCollection()) or the reverse. non-linear geometry type to
    4831             :  * their corresponding linear geometry type (see OGR_GT_GetLinear()), by
    4832             :  * possibly approximating circular arcs they may contain.  Regarding conversion
    4833             :  * from linear geometry types to curve geometry types, only "wrapping" will be
    4834             :  * done. No attempt to retrieve potential circular arcs by de-approximating
    4835             :  * stroking will be done. For that, OGRGeometry::getCurveGeometry() can be used.
    4836             :  *
    4837             :  * The passed in geometry is consumed and a new one returned (or potentially the
    4838             :  * same one).
    4839             :  *
    4840             :  * Starting with GDAL 3.9, this method honours the dimensionality of eTargetType.
    4841             :  *
    4842             :  * @param poGeom the input geometry - ownership is passed to the method.
    4843             :  * @param eTargetType target output geometry type.
    4844             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    4845             :  * @return new geometry, or nullptr in case of error.
    4846             :  *
    4847             :  */
    4848             : 
    4849        5113 : OGRGeometry *OGRGeometryFactory::forceTo(OGRGeometry *poGeom,
    4850             :                                          OGRwkbGeometryType eTargetType,
    4851             :                                          const char *const *papszOptions)
    4852             : {
    4853        5113 :     if (poGeom == nullptr)
    4854           0 :         return poGeom;
    4855             : 
    4856        5113 :     const OGRwkbGeometryType eTargetTypeFlat = wkbFlatten(eTargetType);
    4857        5113 :     if (eTargetTypeFlat == wkbUnknown)
    4858         274 :         return poGeom;
    4859             : 
    4860        4839 :     if (poGeom->IsEmpty())
    4861             :     {
    4862         279 :         OGRGeometry *poRet = createGeometry(eTargetType);
    4863         279 :         if (poRet)
    4864             :         {
    4865         279 :             poRet->assignSpatialReference(poGeom->getSpatialReference());
    4866         279 :             poRet->set3D(OGR_GT_HasZ(eTargetType));
    4867         279 :             poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4868             :         }
    4869         279 :         delete poGeom;
    4870         279 :         return poRet;
    4871             :     }
    4872             : 
    4873        4560 :     OGRwkbGeometryType eType = poGeom->getGeometryType();
    4874        4560 :     OGRwkbGeometryType eTypeFlat = wkbFlatten(eType);
    4875             : 
    4876        4560 :     if (eTargetTypeFlat != eTargetType && (eType == eTypeFlat))
    4877             :     {
    4878          66 :         auto poGeomNew = forceTo(poGeom, eTargetTypeFlat, papszOptions);
    4879          66 :         if (poGeomNew)
    4880             :         {
    4881          66 :             poGeomNew->set3D(OGR_GT_HasZ(eTargetType));
    4882          66 :             poGeomNew->setMeasured(OGR_GT_HasM(eTargetType));
    4883             :         }
    4884          66 :         return poGeomNew;
    4885             :     }
    4886             : 
    4887        4494 :     if (eTypeFlat == eTargetTypeFlat)
    4888             :     {
    4889         555 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    4890         555 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    4891         555 :         return poGeom;
    4892             :     }
    4893             : 
    4894        3939 :     eType = eTypeFlat;
    4895             : 
    4896        5660 :     if (OGR_GT_IsSubClassOf(eType, wkbPolyhedralSurface) &&
    4897        1721 :         (eTargetTypeFlat == wkbMultiSurface ||
    4898             :          eTargetTypeFlat == wkbGeometryCollection))
    4899             :     {
    4900         853 :         OGRwkbGeometryType eTempGeomType = wkbMultiPolygon;
    4901         853 :         if (OGR_GT_HasZ(eTargetType))
    4902         849 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4903         853 :         if (OGR_GT_HasM(eTargetType))
    4904           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4905         853 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4906         853 :                        eTargetType, papszOptions);
    4907             :     }
    4908             : 
    4909        3086 :     if (OGR_GT_IsSubClassOf(eType, wkbGeometryCollection) &&
    4910             :         eTargetTypeFlat == wkbGeometryCollection)
    4911             :     {
    4912         920 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    4913         920 :         auto poRet = OGRGeometryCollection::CastToGeometryCollection(poGC);
    4914         920 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    4915         920 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4916         920 :         return poRet;
    4917             :     }
    4918             : 
    4919        2166 :     if (eType == wkbTriangle && eTargetTypeFlat == wkbPolyhedralSurface)
    4920             :     {
    4921           1 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4922           1 :         poPS->assignSpatialReference(poGeom->getSpatialReference());
    4923           1 :         poPS->addGeometryDirectly(OGRTriangle::CastToPolygon(poGeom));
    4924           1 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4925           1 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4926           1 :         return poPS;
    4927             :     }
    4928        2165 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbPolyhedralSurface)
    4929             :     {
    4930           3 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4931           3 :         poPS->assignSpatialReference(poGeom->getSpatialReference());
    4932           3 :         poPS->addGeometryDirectly(poGeom);
    4933           3 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4934           3 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4935           3 :         return poPS;
    4936             :     }
    4937        2162 :     else if (eType == wkbMultiPolygon &&
    4938             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4939             :     {
    4940           2 :         OGRMultiPolygon *poMP = poGeom->toMultiPolygon();
    4941           2 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4942           4 :         for (int i = 0; i < poMP->getNumGeometries(); ++i)
    4943             :         {
    4944           2 :             poPS->addGeometry(poMP->getGeometryRef(i));
    4945             :         }
    4946           2 :         delete poGeom;
    4947           2 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4948           2 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4949           2 :         return poPS;
    4950             :     }
    4951        2160 :     else if (eType == wkbTIN && eTargetTypeFlat == wkbPolyhedralSurface)
    4952             :     {
    4953           1 :         poGeom = OGRTriangulatedSurface::CastToPolyhedralSurface(
    4954             :             poGeom->toTriangulatedSurface());
    4955             :     }
    4956        2159 :     else if (eType == wkbCurvePolygon &&
    4957             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4958             :     {
    4959           1 :         OGRwkbGeometryType eTempGeomType = wkbPolygon;
    4960           1 :         if (OGR_GT_HasZ(eTargetType))
    4961           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4962           1 :         if (OGR_GT_HasM(eTargetType))
    4963           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4964           1 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4965           1 :                        eTargetType, papszOptions);
    4966             :     }
    4967        2158 :     else if (eType == wkbMultiSurface &&
    4968             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4969             :     {
    4970           1 :         OGRwkbGeometryType eTempGeomType = wkbMultiPolygon;
    4971           1 :         if (OGR_GT_HasZ(eTargetType))
    4972           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4973           1 :         if (OGR_GT_HasM(eTargetType))
    4974           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4975           1 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4976           1 :                        eTargetType, papszOptions);
    4977             :     }
    4978             : 
    4979        2157 :     else if (eType == wkbTriangle && eTargetTypeFlat == wkbTIN)
    4980             :     {
    4981           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    4982           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    4983           1 :         poTS->addGeometryDirectly(poGeom);
    4984           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    4985           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    4986           1 :         return poTS;
    4987             :     }
    4988        2156 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbTIN)
    4989             :     {
    4990           4 :         OGRPolygon *poPoly = poGeom->toPolygon();
    4991           4 :         OGRLinearRing *poLR = poPoly->getExteriorRing();
    4992           7 :         if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    4993           3 :               poPoly->getNumInteriorRings() == 0))
    4994             :         {
    4995           1 :             return poGeom;
    4996             :         }
    4997           3 :         OGRErr eErr = OGRERR_NONE;
    4998           3 :         OGRTriangle *poTriangle = new OGRTriangle(*poPoly, eErr);
    4999           3 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    5000           3 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    5001           3 :         poTS->addGeometryDirectly(poTriangle);
    5002           3 :         delete poGeom;
    5003           3 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    5004           3 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    5005           3 :         return poTS;
    5006             :     }
    5007        2152 :     else if (eType == wkbMultiPolygon && eTargetTypeFlat == wkbTIN)
    5008             :     {
    5009           1 :         OGRMultiPolygon *poMP = poGeom->toMultiPolygon();
    5010           2 :         for (const auto poPoly : *poMP)
    5011             :         {
    5012           1 :             const OGRLinearRing *poLR = poPoly->getExteriorRing();
    5013           2 :             if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    5014           1 :                   poPoly->getNumInteriorRings() == 0))
    5015             :             {
    5016           0 :                 return poGeom;
    5017             :             }
    5018             :         }
    5019           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    5020           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    5021           2 :         for (const auto poPoly : *poMP)
    5022             :         {
    5023           1 :             OGRErr eErr = OGRERR_NONE;
    5024           1 :             poTS->addGeometryDirectly(new OGRTriangle(*poPoly, eErr));
    5025             :         }
    5026           1 :         delete poGeom;
    5027           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    5028           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    5029           1 :         return poTS;
    5030             :     }
    5031        2151 :     else if (eType == wkbPolyhedralSurface && eTargetTypeFlat == wkbTIN)
    5032             :     {
    5033           2 :         OGRPolyhedralSurface *poPS = poGeom->toPolyhedralSurface();
    5034           3 :         for (const auto poPoly : *poPS)
    5035             :         {
    5036           2 :             const OGRLinearRing *poLR = poPoly->getExteriorRing();
    5037           3 :             if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    5038           1 :                   poPoly->getNumInteriorRings() == 0))
    5039             :             {
    5040           1 :                 poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5041           1 :                 poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5042           1 :                 return poGeom;
    5043             :             }
    5044             :         }
    5045           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    5046           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    5047           2 :         for (const auto poPoly : *poPS)
    5048             :         {
    5049           1 :             OGRErr eErr = OGRERR_NONE;
    5050           1 :             poTS->addGeometryDirectly(new OGRTriangle(*poPoly, eErr));
    5051             :         }
    5052           1 :         delete poGeom;
    5053           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    5054           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    5055           1 :         return poTS;
    5056             :     }
    5057             : 
    5058        2149 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbTriangle)
    5059             :     {
    5060           7 :         OGRPolygon *poPoly = poGeom->toPolygon();
    5061           7 :         OGRLinearRing *poLR = poPoly->getExteriorRing();
    5062          13 :         if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    5063           6 :               poPoly->getNumInteriorRings() == 0))
    5064             :         {
    5065           1 :             poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5066           1 :             poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5067           1 :             return poGeom;
    5068             :         }
    5069           6 :         OGRErr eErr = OGRERR_NONE;
    5070           6 :         OGRTriangle *poTriangle = new OGRTriangle(*poPoly, eErr);
    5071           6 :         delete poGeom;
    5072           6 :         poTriangle->set3D(OGR_GT_HasZ(eTargetType));
    5073           6 :         poTriangle->setMeasured(OGR_GT_HasM(eTargetType));
    5074           6 :         return poTriangle;
    5075             :     }
    5076             : 
    5077        2143 :     if (eTargetTypeFlat == wkbTriangle || eTargetTypeFlat == wkbTIN ||
    5078             :         eTargetTypeFlat == wkbPolyhedralSurface)
    5079             :     {
    5080           9 :         OGRwkbGeometryType eTempGeomType = wkbPolygon;
    5081           9 :         if (OGR_GT_HasZ(eTargetType))
    5082           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    5083           9 :         if (OGR_GT_HasM(eTargetType))
    5084           1 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    5085           9 :         OGRGeometry *poPoly = forceTo(poGeom, eTempGeomType, papszOptions);
    5086           9 :         if (poPoly == poGeom)
    5087           0 :             return poGeom;
    5088           9 :         return forceTo(poPoly, eTargetType, papszOptions);
    5089             :     }
    5090             : 
    5091        2134 :     if (eType == wkbTriangle && eTargetTypeFlat == wkbGeometryCollection)
    5092             :     {
    5093           1 :         OGRGeometryCollection *poGC = new OGRGeometryCollection();
    5094           1 :         poGC->assignSpatialReference(poGeom->getSpatialReference());
    5095           1 :         poGC->addGeometryDirectly(poGeom);
    5096           1 :         poGC->set3D(OGR_GT_HasZ(eTargetType));
    5097           1 :         poGC->setMeasured(OGR_GT_HasM(eTargetType));
    5098           1 :         return poGC;
    5099             :     }
    5100             : 
    5101             :     // Promote single to multi.
    5102        3972 :     if (!OGR_GT_IsSubClassOf(eType, wkbGeometryCollection) &&
    5103        1839 :         OGR_GT_IsSubClassOf(OGR_GT_GetCollection(eType), eTargetType))
    5104             :     {
    5105         525 :         OGRGeometry *poRet = createGeometry(eTargetType);
    5106         525 :         if (poRet == nullptr)
    5107             :         {
    5108           0 :             delete poGeom;
    5109           0 :             return nullptr;
    5110             :         }
    5111         525 :         poRet->assignSpatialReference(poGeom->getSpatialReference());
    5112         525 :         if (eType == wkbLineString)
    5113          59 :             poGeom = OGRCurve::CastToLineString(poGeom->toCurve());
    5114         525 :         poRet->toGeometryCollection()->addGeometryDirectly(poGeom);
    5115         525 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5116         525 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5117         525 :         return poRet;
    5118             :     }
    5119             : 
    5120        1608 :     const bool bIsCurve = CPL_TO_BOOL(OGR_GT_IsCurve(eType));
    5121        1608 :     if (bIsCurve && eTargetTypeFlat == wkbCompoundCurve)
    5122             :     {
    5123          32 :         auto poRet = OGRCurve::CastToCompoundCurve(poGeom->toCurve());
    5124          32 :         if (poRet)
    5125             :         {
    5126          30 :             poRet->set3D(OGR_GT_HasZ(eTargetType));
    5127          30 :             poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5128             :         }
    5129          32 :         return poRet;
    5130             :     }
    5131        1576 :     else if (bIsCurve && eTargetTypeFlat == wkbCurvePolygon)
    5132             :     {
    5133          26 :         OGRCurve *poCurve = poGeom->toCurve();
    5134          26 :         if (poCurve->getNumPoints() >= 3 && poCurve->get_IsClosed())
    5135             :         {
    5136          18 :             OGRCurvePolygon *poCP = new OGRCurvePolygon();
    5137          18 :             if (poCP->addRingDirectly(poCurve) == OGRERR_NONE)
    5138             :             {
    5139          18 :                 poCP->assignSpatialReference(poGeom->getSpatialReference());
    5140          18 :                 poCP->set3D(OGR_GT_HasZ(eTargetType));
    5141          18 :                 poCP->setMeasured(OGR_GT_HasM(eTargetType));
    5142          18 :                 return poCP;
    5143             :             }
    5144             :             else
    5145             :             {
    5146           0 :                 delete poCP;
    5147             :             }
    5148           8 :         }
    5149             :     }
    5150        1627 :     else if (eType == wkbLineString &&
    5151          77 :              OGR_GT_IsSubClassOf(eTargetType, wkbMultiSurface))
    5152             :     {
    5153          23 :         OGRGeometry *poTmp = forceTo(poGeom, wkbPolygon, papszOptions);
    5154          23 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5155          15 :             return forceTo(poTmp, eTargetType, papszOptions);
    5156             :     }
    5157        1527 :     else if (bIsCurve && eTargetTypeFlat == wkbMultiSurface)
    5158             :     {
    5159          10 :         OGRGeometry *poTmp = forceTo(poGeom, wkbCurvePolygon, papszOptions);
    5160          10 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5161          10 :             return forceTo(poTmp, eTargetType, papszOptions);
    5162             :     }
    5163        1517 :     else if (bIsCurve && eTargetTypeFlat == wkbMultiPolygon)
    5164             :     {
    5165          13 :         OGRGeometry *poTmp = forceTo(poGeom, wkbPolygon, papszOptions);
    5166          13 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5167          13 :             return forceTo(poTmp, eTargetType, papszOptions);
    5168             :     }
    5169        1504 :     else if (eType == wkbTriangle && eTargetTypeFlat == wkbCurvePolygon)
    5170             :     {
    5171           1 :         auto poRet = OGRSurface::CastToCurvePolygon(
    5172             :             OGRTriangle::CastToPolygon(poGeom)->toSurface());
    5173           1 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5174           1 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5175           1 :         return poRet;
    5176             :     }
    5177        1503 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbCurvePolygon)
    5178             :     {
    5179          19 :         auto poRet = OGRSurface::CastToCurvePolygon(poGeom->toPolygon());
    5180          19 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5181          19 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5182          19 :         return poRet;
    5183             :     }
    5184        1484 :     else if (OGR_GT_IsSubClassOf(eType, wkbCurvePolygon) &&
    5185             :              eTargetTypeFlat == wkbCompoundCurve)
    5186             :     {
    5187          15 :         OGRCurvePolygon *poPoly = poGeom->toCurvePolygon();
    5188          15 :         if (poPoly->getNumInteriorRings() == 0)
    5189             :         {
    5190          14 :             OGRCurve *poRet = poPoly->stealExteriorRingCurve();
    5191          14 :             if (poRet)
    5192          14 :                 poRet->assignSpatialReference(poGeom->getSpatialReference());
    5193          14 :             delete poPoly;
    5194          14 :             return forceTo(poRet, eTargetType, papszOptions);
    5195             :         }
    5196             :     }
    5197        1469 :     else if (eType == wkbMultiPolygon && eTargetTypeFlat == wkbMultiSurface)
    5198             :     {
    5199             :         auto poRet =
    5200          14 :             OGRMultiPolygon::CastToMultiSurface(poGeom->toMultiPolygon());
    5201          14 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5202          14 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5203          14 :         return poRet;
    5204             :     }
    5205        1455 :     else if (eType == wkbMultiLineString && eTargetTypeFlat == wkbMultiCurve)
    5206             :     {
    5207             :         auto poRet =
    5208           9 :             OGRMultiLineString::CastToMultiCurve(poGeom->toMultiLineString());
    5209           9 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5210           9 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5211           9 :         return poRet;
    5212             :     }
    5213        1446 :     else if (OGR_GT_IsSubClassOf(eType, wkbGeometryCollection))
    5214             :     {
    5215         271 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    5216         271 :         if (poGC->getNumGeometries() == 1)
    5217             :         {
    5218         170 :             OGRGeometry *poSubGeom = poGC->getGeometryRef(0);
    5219         170 :             if (poSubGeom)
    5220             :             {
    5221         170 :                 poSubGeom->assignSpatialReference(
    5222         170 :                     poGeom->getSpatialReference());
    5223         170 :                 poGC->removeGeometry(0, FALSE);
    5224             :                 OGRGeometry *poRet =
    5225         170 :                     forceTo(poSubGeom->clone(), eTargetType, papszOptions);
    5226         170 :                 if (OGR_GT_IsSubClassOf(wkbFlatten(poRet->getGeometryType()),
    5227         170 :                                         eTargetType))
    5228             :                 {
    5229         135 :                     delete poGC;
    5230         135 :                     delete poSubGeom;
    5231         135 :                     return poRet;
    5232             :                 }
    5233          35 :                 poGC->addGeometryDirectly(poSubGeom);
    5234          35 :                 poRet->set3D(OGR_GT_HasZ(eTargetType));
    5235          35 :                 poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5236          35 :                 delete poRet;
    5237             :             }
    5238             :         }
    5239             :     }
    5240        1294 :     else if (OGR_GT_IsSubClassOf(eType, wkbCurvePolygon) &&
    5241         119 :              (OGR_GT_IsSubClassOf(eTargetType, wkbMultiSurface) ||
    5242         107 :               OGR_GT_IsSubClassOf(eTargetType, wkbMultiCurve)))
    5243             :     {
    5244          43 :         OGRCurvePolygon *poCP = poGeom->toCurvePolygon();
    5245          43 :         if (poCP->getNumInteriorRings() == 0)
    5246             :         {
    5247          41 :             OGRCurve *poRing = poCP->getExteriorRingCurve();
    5248          41 :             poRing->assignSpatialReference(poGeom->getSpatialReference());
    5249          41 :             OGRwkbGeometryType eRingType = poRing->getGeometryType();
    5250          41 :             OGRGeometry *poRingDup = poRing->clone();
    5251          41 :             OGRGeometry *poRet = forceTo(poRingDup, eTargetType, papszOptions);
    5252          57 :             if (poRet->getGeometryType() != eRingType &&
    5253          16 :                 !(eTypeFlat == wkbPolygon &&
    5254             :                   eTargetTypeFlat == wkbMultiLineString))
    5255             :             {
    5256          29 :                 delete poCP;
    5257          29 :                 return poRet;
    5258             :             }
    5259             :             else
    5260             :             {
    5261          12 :                 delete poRet;
    5262             :             }
    5263             :         }
    5264             :     }
    5265             : 
    5266        1303 :     if (eTargetTypeFlat == wkbLineString)
    5267             :     {
    5268          99 :         poGeom = forceToLineString(poGeom);
    5269          99 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5270          99 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5271             :     }
    5272        1204 :     else if (eTargetTypeFlat == wkbPolygon)
    5273             :     {
    5274         104 :         poGeom = forceToPolygon(poGeom);
    5275         104 :         if (poGeom)
    5276             :         {
    5277         104 :             poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5278         104 :             poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5279             :         }
    5280             :     }
    5281        1100 :     else if (eTargetTypeFlat == wkbMultiPolygon)
    5282             :     {
    5283         916 :         poGeom = forceToMultiPolygon(poGeom);
    5284         916 :         if (poGeom)
    5285             :         {
    5286         916 :             poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5287         916 :             poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5288             :         }
    5289             :     }
    5290         184 :     else if (eTargetTypeFlat == wkbMultiLineString)
    5291             :     {
    5292          41 :         poGeom = forceToMultiLineString(poGeom);
    5293          41 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5294          41 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5295             :     }
    5296         143 :     else if (eTargetTypeFlat == wkbMultiPoint)
    5297             :     {
    5298          22 :         poGeom = forceToMultiPoint(poGeom);
    5299          22 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5300          22 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5301             :     }
    5302             : 
    5303        1303 :     return poGeom;
    5304             : }
    5305             : 
    5306             : /************************************************************************/
    5307             : /*                          OGR_G_ForceTo()                             */
    5308             : /************************************************************************/
    5309             : 
    5310             : /**
    5311             :  * \brief Convert to another geometry type
    5312             :  *
    5313             :  * This function is the same as the C++ method OGRGeometryFactory::forceTo().
    5314             :  *
    5315             :  * @param hGeom the input geometry - ownership is passed to the method.
    5316             :  * @param eTargetType target output geometry type.
    5317             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    5318             :  * @return new geometry.
    5319             :  *
    5320             :  */
    5321             : 
    5322         848 : OGRGeometryH OGR_G_ForceTo(OGRGeometryH hGeom, OGRwkbGeometryType eTargetType,
    5323             :                            char **papszOptions)
    5324             : 
    5325             : {
    5326         848 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceTo(
    5327         848 :         OGRGeometry::FromHandle(hGeom), eTargetType, papszOptions));
    5328             : }
    5329             : 
    5330             : /************************************************************************/
    5331             : /*                        makeCompatibleWith()                          */
    5332             : /************************************************************************/
    5333             : 
    5334             : /**
    5335             :  * \brief Adjust a geometry to be compatible with a specified geometry type.
    5336             :  *
    5337             :  * This is a soft version of forceTo() that:
    5338             :  * - converts single geometry type to a multi-geometry type if eTargetType is
    5339             :  *   a multi-geometry type (e.g. wkbMultiPolygon) and the single geometry type
    5340             :  *   is compatible with it (e.g. wkbPolygon)
    5341             :  * - insert components of multi-geometries that are not wkbGeometryCollection
    5342             :  *   into a GeometryCollection, when eTargetType == wkbGeometryCollection
    5343             :  * - insert single geometries into a GeometryCollection, when
    5344             :  *   eTargetType == wkbGeometryCollection.
    5345             :  * - convert a single-part multi-geometry to the specified target single
    5346             :  *   geometry type. e.g a MultiPolygon to a Polygon
    5347             :  * - in other cases, the geometry is returned unmodified.
    5348             :  *
    5349             :  * @param poGeom the input geometry - ownership is passed to the method.
    5350             :  * @param eTargetType target output geometry type.
    5351             :  *                    Typically a layer geometry type.
    5352             :  * @return a geometry (potentially poGeom itself)
    5353             :  *
    5354             :  * @since GDAL 3.12
    5355             :  */
    5356             : 
    5357             : std::unique_ptr<OGRGeometry>
    5358          39 : OGRGeometryFactory::makeCompatibleWith(std::unique_ptr<OGRGeometry> poGeom,
    5359             :                                        OGRwkbGeometryType eTargetType)
    5360             : {
    5361          39 :     const auto eGeomType = poGeom->getGeometryType();
    5362          39 :     const auto eFlattenTargetType = wkbFlatten(eTargetType);
    5363          78 :     if (eFlattenTargetType != wkbUnknown &&
    5364          39 :         eFlattenTargetType != wkbFlatten(eGeomType))
    5365             :     {
    5366          12 :         if (OGR_GT_GetCollection(eGeomType) == eFlattenTargetType)
    5367             :         {
    5368           4 :             poGeom.reset(
    5369             :                 OGRGeometryFactory::forceTo(poGeom.release(), eTargetType));
    5370             :         }
    5371           8 :         else if (eGeomType == OGR_GT_GetCollection(eTargetType) &&
    5372           0 :                  poGeom->toGeometryCollection()->getNumGeometries() == 1)
    5373             :         {
    5374           0 :             poGeom = poGeom->toGeometryCollection()->stealGeometry(0);
    5375             :         }
    5376           8 :         else if (eFlattenTargetType == wkbGeometryCollection)
    5377             :         {
    5378           4 :             auto poGeomColl = std::make_unique<OGRGeometryCollection>();
    5379           2 :             if (OGR_GT_IsSubClassOf(eGeomType, wkbGeometryCollection))
    5380             :             {
    5381           3 :                 for (const auto *poSubGeom : *(poGeom->toGeometryCollection()))
    5382             :                 {
    5383           2 :                     poGeomColl->addGeometry(poSubGeom);
    5384             :                 }
    5385             :             }
    5386             :             else
    5387             :             {
    5388           1 :                 poGeomColl->addGeometry(std::move(poGeom));
    5389             :             }
    5390           2 :             poGeom = std::move(poGeomColl);
    5391             :         }
    5392             :     }
    5393          39 :     return poGeom;
    5394             : }
    5395             : 
    5396             : /************************************************************************/
    5397             : /*                         GetCurveParameters()                          */
    5398             : /************************************************************************/
    5399             : 
    5400             : /**
    5401             :  * \brief Returns the parameter of an arc circle.
    5402             :  *
    5403             :  * Angles are return in radians, with trigonometic convention (counter clock
    5404             :  * wise)
    5405             :  *
    5406             :  * @param x0 x of first point
    5407             :  * @param y0 y of first point
    5408             :  * @param x1 x of intermediate point
    5409             :  * @param y1 y of intermediate point
    5410             :  * @param x2 x of final point
    5411             :  * @param y2 y of final point
    5412             :  * @param R radius (output)
    5413             :  * @param cx x of arc center (output)
    5414             :  * @param cy y of arc center (output)
    5415             :  * @param alpha0 angle between center and first point, in radians (output)
    5416             :  * @param alpha1 angle between center and intermediate point, in radians
    5417             :  * (output)
    5418             :  * @param alpha2 angle between center and final point, in radians (output)
    5419             :  * @return TRUE if the points are not aligned and define an arc circle.
    5420             :  *
    5421             :  */
    5422             : 
    5423      186531 : int OGRGeometryFactory::GetCurveParameters(double x0, double y0, double x1,
    5424             :                                            double y1, double x2, double y2,
    5425             :                                            double &R, double &cx, double &cy,
    5426             :                                            double &alpha0, double &alpha1,
    5427             :                                            double &alpha2)
    5428             : {
    5429      559593 :     if (std::isnan(x0) || std::isnan(y0) || std::isnan(x1) || std::isnan(y1) ||
    5430      559593 :         std::isnan(x2) || std::isnan(y2))
    5431             :     {
    5432           0 :         return FALSE;
    5433             :     }
    5434             : 
    5435             :     // Circle.
    5436      186531 :     if (x0 == x2 && y0 == y2)
    5437             :     {
    5438         149 :         if (x0 != x1 || y0 != y1)
    5439             :         {
    5440         148 :             cx = (x0 + x1) / 2;
    5441         148 :             cy = (y0 + y1) / 2;
    5442         148 :             R = DISTANCE(cx, cy, x0, y0);
    5443             :             // Arbitrarily pick counter-clock-wise order (like PostGIS does).
    5444         148 :             alpha0 = atan2(y0 - cy, x0 - cx);
    5445         148 :             alpha1 = alpha0 + M_PI;
    5446         148 :             alpha2 = alpha0 + 2 * M_PI;
    5447         148 :             return TRUE;
    5448             :         }
    5449             :         else
    5450             :         {
    5451           1 :             return FALSE;
    5452             :         }
    5453             :     }
    5454             : 
    5455      186382 :     double dx01 = x1 - x0;
    5456      186382 :     double dy01 = y1 - y0;
    5457      186382 :     double dx12 = x2 - x1;
    5458      186382 :     double dy12 = y2 - y1;
    5459             : 
    5460             :     // Normalize above values so as to make sure we don't end up with
    5461             :     // computing a difference of too big values.
    5462      186382 :     double dfScale = fabs(dx01);
    5463      186382 :     if (fabs(dy01) > dfScale)
    5464       92686 :         dfScale = fabs(dy01);
    5465      186382 :     if (fabs(dx12) > dfScale)
    5466       46530 :         dfScale = fabs(dx12);
    5467      186382 :     if (fabs(dy12) > dfScale)
    5468       46485 :         dfScale = fabs(dy12);
    5469      186382 :     const double dfInvScale = 1.0 / dfScale;
    5470      186382 :     dx01 *= dfInvScale;
    5471      186382 :     dy01 *= dfInvScale;
    5472      186382 :     dx12 *= dfInvScale;
    5473      186382 :     dy12 *= dfInvScale;
    5474             : 
    5475      186382 :     const double det = dx01 * dy12 - dx12 * dy01;
    5476      186382 :     if (fabs(det) < 1.0e-8 || std::isnan(det))
    5477             :     {
    5478         127 :         return FALSE;
    5479             :     }
    5480      186255 :     const double x01_mid = (x0 + x1) * dfInvScale;
    5481      186255 :     const double x12_mid = (x1 + x2) * dfInvScale;
    5482      186255 :     const double y01_mid = (y0 + y1) * dfInvScale;
    5483      186255 :     const double y12_mid = (y1 + y2) * dfInvScale;
    5484      186255 :     const double c01 = dx01 * x01_mid + dy01 * y01_mid;
    5485      186255 :     const double c12 = dx12 * x12_mid + dy12 * y12_mid;
    5486      186255 :     cx = 0.5 * dfScale * (c01 * dy12 - c12 * dy01) / det;
    5487      186255 :     cy = 0.5 * dfScale * (-c01 * dx12 + c12 * dx01) / det;
    5488             : 
    5489      186255 :     alpha0 = atan2((y0 - cy) * dfInvScale, (x0 - cx) * dfInvScale);
    5490      186255 :     alpha1 = atan2((y1 - cy) * dfInvScale, (x1 - cx) * dfInvScale);
    5491      186255 :     alpha2 = atan2((y2 - cy) * dfInvScale, (x2 - cx) * dfInvScale);
    5492      186255 :     R = DISTANCE(cx, cy, x0, y0);
    5493             : 
    5494             :     // If det is negative, the orientation if clockwise.
    5495      186255 :     if (det < 0)
    5496             :     {
    5497       90918 :         if (alpha1 > alpha0)
    5498        1259 :             alpha1 -= 2 * M_PI;
    5499       90918 :         if (alpha2 > alpha1)
    5500        3286 :             alpha2 -= 2 * M_PI;
    5501             :     }
    5502             :     else
    5503             :     {
    5504       95337 :         if (alpha1 < alpha0)
    5505        1364 :             alpha1 += 2 * M_PI;
    5506       95337 :         if (alpha2 < alpha1)
    5507        3314 :             alpha2 += 2 * M_PI;
    5508             :     }
    5509             : 
    5510      186255 :     CPLAssert((alpha0 <= alpha1 && alpha1 <= alpha2) ||
    5511             :               (alpha0 >= alpha1 && alpha1 >= alpha2));
    5512             : 
    5513      186255 :     return TRUE;
    5514             : }
    5515             : 
    5516             : /************************************************************************/
    5517             : /*                      OGRGeometryFactoryStrokeArc()                   */
    5518             : /************************************************************************/
    5519             : 
    5520        4369 : static void OGRGeometryFactoryStrokeArc(OGRLineString *poLine, double cx,
    5521             :                                         double cy, double R, double z0,
    5522             :                                         double z1, int bHasZ, double alpha0,
    5523             :                                         double alpha1, double dfStep,
    5524             :                                         int bStealthConstraints)
    5525             : {
    5526        4369 :     const int nSign = dfStep > 0 ? 1 : -1;
    5527             : 
    5528             :     // Constant angle between all points, so as to not depend on winding order.
    5529        4369 :     const double dfNumSteps = fabs((alpha1 - alpha0) / dfStep) + 0.5;
    5530        4369 :     if (dfNumSteps >= std::numeric_limits<int>::max() ||
    5531        4369 :         dfNumSteps <= std::numeric_limits<int>::min() || std::isnan(dfNumSteps))
    5532             :     {
    5533           0 :         CPLError(CE_Warning, CPLE_AppDefined,
    5534             :                  "OGRGeometryFactoryStrokeArc: bogus steps: "
    5535             :                  "%lf %lf %lf %lf",
    5536             :                  alpha0, alpha1, dfStep, dfNumSteps);
    5537           0 :         return;
    5538             :     }
    5539             : 
    5540        4369 :     int nSteps = static_cast<int>(dfNumSteps);
    5541        4369 :     if (bStealthConstraints)
    5542             :     {
    5543             :         // We need at least 6 intermediate vertex, and if more additional
    5544             :         // multiples of 2.
    5545        4179 :         if (nSteps < 1 + 6)
    5546         113 :             nSteps = 1 + 6;
    5547             :         else
    5548        4066 :             nSteps = 1 + 6 + 2 * ((nSteps - (1 + 6) + (2 - 1)) / 2);
    5549             :     }
    5550         190 :     else if (nSteps < 4)
    5551             :     {
    5552         186 :         nSteps = 4;
    5553             :     }
    5554        4369 :     dfStep = nSign * fabs((alpha1 - alpha0) / nSteps);
    5555        4369 :     double alpha = alpha0 + dfStep;
    5556             : 
    5557      231869 :     for (; (alpha - alpha1) * nSign < -1e-8; alpha += dfStep)
    5558             :     {
    5559      227500 :         const double dfX = cx + R * cos(alpha);
    5560      227500 :         const double dfY = cy + R * sin(alpha);
    5561      227500 :         if (bHasZ)
    5562             :         {
    5563        9896 :             const double z =
    5564        9896 :                 z0 + (z1 - z0) * (alpha - alpha0) / (alpha1 - alpha0);
    5565        9896 :             poLine->addPoint(dfX, dfY, z);
    5566             :         }
    5567             :         else
    5568             :         {
    5569      217604 :             poLine->addPoint(dfX, dfY);
    5570             :         }
    5571             :     }
    5572             : }
    5573             : 
    5574             : /************************************************************************/
    5575             : /*                         OGRGF_SetHiddenValue()                       */
    5576             : /************************************************************************/
    5577             : 
    5578             : // TODO(schwehr): Cleanup these static constants.
    5579             : constexpr int HIDDEN_ALPHA_WIDTH = 32;
    5580             : constexpr GUInt32 HIDDEN_ALPHA_SCALE =
    5581             :     static_cast<GUInt32>((static_cast<GUIntBig>(1) << HIDDEN_ALPHA_WIDTH) - 2);
    5582             : constexpr int HIDDEN_ALPHA_HALF_WIDTH = (HIDDEN_ALPHA_WIDTH / 2);
    5583             : constexpr int HIDDEN_ALPHA_HALF_MASK = (1 << HIDDEN_ALPHA_HALF_WIDTH) - 1;
    5584             : 
    5585             : // Encode 16-bit nValue in the 8-lsb of dfX and dfY.
    5586             : 
    5587             : #ifdef CPL_LSB
    5588             : constexpr int DOUBLE_LSB_OFFSET = 0;
    5589             : #else
    5590             : constexpr int DOUBLE_LSB_OFFSET = 7;
    5591             : #endif
    5592             : 
    5593      227366 : static void OGRGF_SetHiddenValue(GUInt16 nValue, double &dfX, double &dfY)
    5594             : {
    5595      227366 :     GByte abyData[8] = {};
    5596             : 
    5597      227366 :     memcpy(abyData, &dfX, sizeof(double));
    5598      227366 :     abyData[DOUBLE_LSB_OFFSET] = static_cast<GByte>(nValue & 0xFF);
    5599      227366 :     memcpy(&dfX, abyData, sizeof(double));
    5600             : 
    5601      227366 :     memcpy(abyData, &dfY, sizeof(double));
    5602      227366 :     abyData[DOUBLE_LSB_OFFSET] = static_cast<GByte>(nValue >> 8);
    5603      227366 :     memcpy(&dfY, abyData, sizeof(double));
    5604      227366 : }
    5605             : 
    5606             : /************************************************************************/
    5607             : /*                         OGRGF_GetHiddenValue()                       */
    5608             : /************************************************************************/
    5609             : 
    5610             : // Decode 16-bit nValue from the 8-lsb of dfX and dfY.
    5611      181338 : static GUInt16 OGRGF_GetHiddenValue(double dfX, double dfY)
    5612             : {
    5613      181338 :     GByte abyData[8] = {};
    5614      181338 :     memcpy(abyData, &dfX, sizeof(double));
    5615      181338 :     GUInt16 nValue = abyData[DOUBLE_LSB_OFFSET];
    5616      181338 :     memcpy(abyData, &dfY, sizeof(double));
    5617      181338 :     nValue |= (abyData[DOUBLE_LSB_OFFSET] << 8);
    5618             : 
    5619      181338 :     return nValue;
    5620             : }
    5621             : 
    5622             : /************************************************************************/
    5623             : /*                     OGRGF_NeedSwithArcOrder()                        */
    5624             : /************************************************************************/
    5625             : 
    5626             : // We need to define a full ordering between starting point and ending point
    5627             : // whatever it is.
    5628        9555 : static bool OGRGF_NeedSwithArcOrder(double x0, double y0, double x2, double y2)
    5629             : {
    5630        9555 :     return x0 < x2 || (x0 == x2 && y0 < y2);
    5631             : }
    5632             : 
    5633             : /************************************************************************/
    5634             : /*                         curveToLineString()                          */
    5635             : /************************************************************************/
    5636             : 
    5637             : /* clang-format off */
    5638             : /**
    5639             :  * \brief Converts an arc circle into an approximate line string
    5640             :  *
    5641             :  * The arc circle is defined by a first point, an intermediate point and a
    5642             :  * final point.
    5643             :  *
    5644             :  * The provided dfMaxAngleStepSizeDegrees is a hint. The discretization
    5645             :  * algorithm may pick a slightly different value.
    5646             :  *
    5647             :  * So as to avoid gaps when rendering curve polygons that share common arcs,
    5648             :  * this method is guaranteed to return a line with reversed vertex if called
    5649             :  * with inverted first and final point, and identical intermediate point.
    5650             :  *
    5651             :  * @param x0 x of first point
    5652             :  * @param y0 y of first point
    5653             :  * @param z0 z of first point
    5654             :  * @param x1 x of intermediate point
    5655             :  * @param y1 y of intermediate point
    5656             :  * @param z1 z of intermediate point
    5657             :  * @param x2 x of final point
    5658             :  * @param y2 y of final point
    5659             :  * @param z2 z of final point
    5660             :  * @param bHasZ TRUE if z must be taken into account
    5661             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    5662             :  * arc, zero to use the default setting.
    5663             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    5664             :  * Recognized options:
    5665             :  * <ul>
    5666             :  * <li>ADD_INTERMEDIATE_POINT=STEALTH/YES/NO (Default to STEALTH).
    5667             :  *         Determine if and how the intermediate point must be output in the
    5668             :  *         linestring.  If set to STEALTH, no explicit intermediate point is
    5669             :  *         added but its properties are encoded in low significant bits of
    5670             :  *         intermediate points and OGRGeometryFactory::curveFromLineString() can
    5671             :  *         decode them.  This is the best compromise for round-tripping in OGR
    5672             :  *         and better results with PostGIS
    5673             :  *         <a href="http://postgis.org/docs/ST_LineToCurve.html">ST_LineToCurve()</a>.
    5674             :  *         If set to YES, the intermediate point is explicitly added to the
    5675             :  *         linestring. If set to NO, the intermediate point is not explicitly
    5676             :  *         added.
    5677             :  * </li>
    5678             :  * </ul>
    5679             :  *
    5680             :  * @return the converted geometry (ownership to caller).
    5681             :  *
    5682             :  */
    5683             : /* clang-format on */
    5684             : 
    5685        6474 : OGRLineString *OGRGeometryFactory::curveToLineString(
    5686             :     double x0, double y0, double z0, double x1, double y1, double z1, double x2,
    5687             :     double y2, double z2, int bHasZ, double dfMaxAngleStepSizeDegrees,
    5688             :     const char *const *papszOptions)
    5689             : {
    5690             :     // So as to make sure the same curve followed in both direction results
    5691             :     // in perfectly(=binary identical) symmetrical points.
    5692        6474 :     if (OGRGF_NeedSwithArcOrder(x0, y0, x2, y2))
    5693             :     {
    5694             :         OGRLineString *poLS =
    5695        2199 :             curveToLineString(x2, y2, z2, x1, y1, z1, x0, y0, z0, bHasZ,
    5696             :                               dfMaxAngleStepSizeDegrees, papszOptions);
    5697        2199 :         poLS->reversePoints();
    5698        2199 :         return poLS;
    5699             :     }
    5700             : 
    5701        4275 :     double R = 0.0;
    5702        4275 :     double cx = 0.0;
    5703        4275 :     double cy = 0.0;
    5704        4275 :     double alpha0 = 0.0;
    5705        4275 :     double alpha1 = 0.0;
    5706        4275 :     double alpha2 = 0.0;
    5707             : 
    5708        4275 :     OGRLineString *poLine = new OGRLineString();
    5709        4275 :     bool bIsArc = true;
    5710        4275 :     if (!GetCurveParameters(x0, y0, x1, y1, x2, y2, R, cx, cy, alpha0, alpha1,
    5711             :                             alpha2))
    5712             :     {
    5713          93 :         bIsArc = false;
    5714          93 :         cx = 0.0;
    5715          93 :         cy = 0.0;
    5716          93 :         R = 0.0;
    5717          93 :         alpha0 = 0.0;
    5718          93 :         alpha1 = 0.0;
    5719          93 :         alpha2 = 0.0;
    5720             :     }
    5721             : 
    5722        4275 :     const int nSign = alpha1 >= alpha0 ? 1 : -1;
    5723             : 
    5724             :     // support default arc step setting.
    5725        4275 :     if (dfMaxAngleStepSizeDegrees < 1e-6)
    5726             :     {
    5727        4256 :         dfMaxAngleStepSizeDegrees = OGRGeometryFactory::GetDefaultArcStepSize();
    5728             :     }
    5729             : 
    5730        4275 :     double dfStep = dfMaxAngleStepSizeDegrees / 180 * M_PI;
    5731        4275 :     if (dfStep <= 0.01 / 180 * M_PI)
    5732             :     {
    5733           0 :         CPLDebug("OGR", "Too small arc step size: limiting to 0.01 degree.");
    5734           0 :         dfStep = 0.01 / 180 * M_PI;
    5735             :     }
    5736             : 
    5737        4275 :     dfStep *= nSign;
    5738             : 
    5739        4275 :     if (bHasZ)
    5740         272 :         poLine->addPoint(x0, y0, z0);
    5741             :     else
    5742        4003 :         poLine->addPoint(x0, y0);
    5743             : 
    5744        4275 :     bool bAddIntermediatePoint = false;
    5745        4275 :     bool bStealth = true;
    5746        4281 :     for (const char *const *papszIter = papszOptions; papszIter && *papszIter;
    5747             :          papszIter++)
    5748             :     {
    5749           6 :         char *pszKey = nullptr;
    5750           6 :         const char *pszValue = CPLParseNameValue(*papszIter, &pszKey);
    5751           6 :         if (pszKey != nullptr && EQUAL(pszKey, "ADD_INTERMEDIATE_POINT"))
    5752             :         {
    5753           4 :             if (EQUAL(pszValue, "YES") || EQUAL(pszValue, "TRUE") ||
    5754           3 :                 EQUAL(pszValue, "ON"))
    5755             :             {
    5756           1 :                 bAddIntermediatePoint = true;
    5757           1 :                 bStealth = false;
    5758             :             }
    5759           3 :             else if (EQUAL(pszValue, "NO") || EQUAL(pszValue, "FALSE") ||
    5760           1 :                      EQUAL(pszValue, "OFF"))
    5761             :             {
    5762           2 :                 bAddIntermediatePoint = false;
    5763           2 :                 bStealth = false;
    5764             :             }
    5765             :             else if (EQUAL(pszValue, "STEALTH"))
    5766             :             {
    5767             :                 // default.
    5768             :             }
    5769             :         }
    5770             :         else
    5771             :         {
    5772           2 :             CPLError(CE_Warning, CPLE_NotSupported, "Unsupported option: %s",
    5773             :                      *papszIter);
    5774             :         }
    5775           6 :         CPLFree(pszKey);
    5776             :     }
    5777             : 
    5778        4275 :     if (!bIsArc || bAddIntermediatePoint)
    5779             :     {
    5780          94 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z0, z1, bHasZ, alpha0,
    5781             :                                     alpha1, dfStep, FALSE);
    5782             : 
    5783          94 :         if (bHasZ)
    5784          25 :             poLine->addPoint(x1, y1, z1);
    5785             :         else
    5786          69 :             poLine->addPoint(x1, y1);
    5787             : 
    5788          94 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z1, z2, bHasZ, alpha1,
    5789             :                                     alpha2, dfStep, FALSE);
    5790             :     }
    5791             :     else
    5792             :     {
    5793        4181 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z0, z2, bHasZ, alpha0,
    5794             :                                     alpha2, dfStep, bStealth);
    5795             : 
    5796        4181 :         if (bStealth && poLine->getNumPoints() > 6)
    5797             :         {
    5798             :             // 'Hide' the angle of the intermediate point in the 8
    5799             :             // low-significant bits of the x, y of the first 2 computed points
    5800             :             // (so 32 bits), then put 0xFF, and on the last couple points put
    5801             :             // again the angle but in reverse order, so that overall the
    5802             :             // low-significant bits of all the points are symmetrical w.r.t the
    5803             :             // mid-point.
    5804        4179 :             const double dfRatio = (alpha1 - alpha0) / (alpha2 - alpha0);
    5805        4179 :             double dfAlphaRatio = 0.5 + HIDDEN_ALPHA_SCALE * dfRatio;
    5806        4179 :             if (dfAlphaRatio < 0.0)
    5807             :             {
    5808           0 :                 CPLError(CE_Warning, CPLE_AppDefined, "AlphaRation < 0: %lf",
    5809             :                          dfAlphaRatio);
    5810           0 :                 dfAlphaRatio *= -1;
    5811             :             }
    5812        8358 :             else if (dfAlphaRatio >= std::numeric_limits<GUInt32>::max() ||
    5813        4179 :                      std::isnan(dfAlphaRatio))
    5814             :             {
    5815           0 :                 CPLError(CE_Warning, CPLE_AppDefined,
    5816             :                          "AlphaRatio too large: %lf", dfAlphaRatio);
    5817           0 :                 dfAlphaRatio = std::numeric_limits<GUInt32>::max();
    5818             :             }
    5819        4179 :             const GUInt32 nAlphaRatio = static_cast<GUInt32>(dfAlphaRatio);
    5820        4179 :             const GUInt16 nAlphaRatioLow = nAlphaRatio & HIDDEN_ALPHA_HALF_MASK;
    5821        4179 :             const GUInt16 nAlphaRatioHigh =
    5822        4179 :                 nAlphaRatio >> HIDDEN_ALPHA_HALF_WIDTH;
    5823             :             // printf("alpha0=%f, alpha1=%f, alpha2=%f, dfRatio=%f, "/*ok*/
    5824             :             //        "nAlphaRatio = %u\n",
    5825             :             //        alpha0, alpha1, alpha2, dfRatio, nAlphaRatio);
    5826             : 
    5827        4179 :             CPLAssert(((poLine->getNumPoints() - 1 - 6) % 2) == 0);
    5828             : 
    5829      117862 :             for (int i = 1; i + 1 < poLine->getNumPoints(); i += 2)
    5830             :             {
    5831      113683 :                 GUInt16 nVal = 0xFFFF;
    5832             : 
    5833      113683 :                 double dfX = poLine->getX(i);
    5834      113683 :                 double dfY = poLine->getY(i);
    5835      113683 :                 if (i == 1)
    5836        4179 :                     nVal = nAlphaRatioLow;
    5837      109504 :                 else if (i == poLine->getNumPoints() - 2)
    5838        4179 :                     nVal = nAlphaRatioHigh;
    5839      113683 :                 OGRGF_SetHiddenValue(nVal, dfX, dfY);
    5840      113683 :                 poLine->setPoint(i, dfX, dfY);
    5841             : 
    5842      113683 :                 dfX = poLine->getX(i + 1);
    5843      113683 :                 dfY = poLine->getY(i + 1);
    5844      113683 :                 if (i == 1)
    5845        4179 :                     nVal = nAlphaRatioHigh;
    5846      109504 :                 else if (i == poLine->getNumPoints() - 2)
    5847        4179 :                     nVal = nAlphaRatioLow;
    5848      113683 :                 OGRGF_SetHiddenValue(nVal, dfX, dfY);
    5849      113683 :                 poLine->setPoint(i + 1, dfX, dfY);
    5850             :             }
    5851             :         }
    5852             :     }
    5853             : 
    5854        4275 :     if (bHasZ)
    5855         272 :         poLine->addPoint(x2, y2, z2);
    5856             :     else
    5857        4003 :         poLine->addPoint(x2, y2);
    5858             : 
    5859        4275 :     return poLine;
    5860             : }
    5861             : 
    5862             : /************************************************************************/
    5863             : /*                         OGRGF_FixAngle()                             */
    5864             : /************************************************************************/
    5865             : 
    5866             : // Fix dfAngle by offsets of 2 PI so that it lies between dfAngleStart and
    5867             : // dfAngleStop, whatever their respective order.
    5868      180152 : static double OGRGF_FixAngle(double dfAngleStart, double dfAngleStop,
    5869             :                              double dfAngle)
    5870             : {
    5871      180152 :     if (dfAngleStart < dfAngleStop)
    5872             :     {
    5873      127359 :         while (dfAngle <= dfAngleStart + 1e-8)
    5874       35054 :             dfAngle += 2 * M_PI;
    5875             :     }
    5876             :     else
    5877             :     {
    5878      121117 :         while (dfAngle >= dfAngleStart - 1e-8)
    5879       33270 :             dfAngle -= 2 * M_PI;
    5880             :     }
    5881      180152 :     return dfAngle;
    5882             : }
    5883             : 
    5884             : /************************************************************************/
    5885             : /*                         OGRGF_DetectArc()                            */
    5886             : /************************************************************************/
    5887             : 
    5888             : // #define VERBOSE_DEBUG_CURVEFROMLINESTRING
    5889             : 
    5890       12267 : static inline bool IS_ALMOST_INTEGER(double x)
    5891             : {
    5892       12267 :     const double val = fabs(x - floor(x + 0.5));
    5893       12267 :     return val < 1.0e-8;
    5894             : }
    5895             : 
    5896        3482 : static int OGRGF_DetectArc(const OGRLineString *poLS, int i,
    5897             :                            OGRCompoundCurve *&poCC, OGRCircularString *&poCS,
    5898             :                            OGRLineString *&poLSNew)
    5899             : {
    5900        3482 :     if (i + 3 >= poLS->getNumPoints())
    5901         305 :         return -1;
    5902             : 
    5903        6354 :     OGRPoint p0;
    5904        6354 :     OGRPoint p1;
    5905        6354 :     OGRPoint p2;
    5906        3177 :     poLS->getPoint(i, &p0);
    5907        3177 :     poLS->getPoint(i + 1, &p1);
    5908        3177 :     poLS->getPoint(i + 2, &p2);
    5909        3177 :     double R_1 = 0.0;
    5910        3177 :     double cx_1 = 0.0;
    5911        3177 :     double cy_1 = 0.0;
    5912        3177 :     double alpha0_1 = 0.0;
    5913        3177 :     double alpha1_1 = 0.0;
    5914        3177 :     double alpha2_1 = 0.0;
    5915        6347 :     if (!(OGRGeometryFactory::GetCurveParameters(
    5916             :               p0.getX(), p0.getY(), p1.getX(), p1.getY(), p2.getX(), p2.getY(),
    5917             :               R_1, cx_1, cy_1, alpha0_1, alpha1_1, alpha2_1) &&
    5918        3170 :           fabs(alpha2_1 - alpha0_1) < 2.0 * 20.0 / 180.0 * M_PI))
    5919             :     {
    5920          24 :         return -1;
    5921             :     }
    5922             : 
    5923        3153 :     const double dfDeltaAlpha10 = alpha1_1 - alpha0_1;
    5924        3153 :     const double dfDeltaAlpha21 = alpha2_1 - alpha1_1;
    5925             :     const double dfMaxDeltaAlpha =
    5926        3153 :         std::max(fabs(dfDeltaAlpha10), fabs(dfDeltaAlpha21));
    5927             :     GUInt32 nAlphaRatioRef =
    5928        3153 :         OGRGF_GetHiddenValue(p1.getX(), p1.getY()) |
    5929        3153 :         (OGRGF_GetHiddenValue(p2.getX(), p2.getY()) << HIDDEN_ALPHA_HALF_WIDTH);
    5930        3153 :     bool bFoundFFFFFFFFPattern = false;
    5931        3153 :     bool bFoundReversedAlphaRatioRef = false;
    5932        3153 :     bool bValidAlphaRatio = nAlphaRatioRef > 0 && nAlphaRatioRef < 0xFFFFFFFF;
    5933        3153 :     int nCountValidAlphaRatio = 1;
    5934             : 
    5935        3153 :     double dfScale = std::max(1.0, R_1);
    5936        3153 :     dfScale = std::max(dfScale, fabs(cx_1));
    5937        3153 :     dfScale = std::max(dfScale, fabs(cy_1));
    5938        3153 :     dfScale = pow(10.0, ceil(log10(dfScale)));
    5939        3153 :     const double dfInvScale = 1.0 / dfScale;
    5940             : 
    5941        3153 :     const int bInitialConstantStep =
    5942        3153 :         (fabs(dfDeltaAlpha10 - dfDeltaAlpha21) / dfMaxDeltaAlpha) < 1.0e-4;
    5943        3153 :     const double dfDeltaEpsilon =
    5944        3153 :         bInitialConstantStep ? dfMaxDeltaAlpha * 1e-4 : dfMaxDeltaAlpha / 10;
    5945             : 
    5946             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5947             :     printf("----------------------------\n");             /*ok*/
    5948             :     printf("Curve beginning at offset i = %d\n", i);      /*ok*/
    5949             :     printf("Initial alpha ratio = %u\n", nAlphaRatioRef); /*ok*/
    5950             :     /*ok*/ printf("Initial R = %.16g, cx = %.16g, cy = %.16g\n", R_1, cx_1,
    5951             :                   cy_1);
    5952             :     printf("dfScale = %f\n", dfScale);   /*ok*/
    5953             :     printf("bInitialConstantStep = %d, " /*ok*/
    5954             :            "fabs(dfDeltaAlpha10 - dfDeltaAlpha21)=%.8g, "
    5955             :            "dfMaxDeltaAlpha = %.8f, "
    5956             :            "dfDeltaEpsilon = %.8f (%.8f)\n",
    5957             :            bInitialConstantStep, fabs(dfDeltaAlpha10 - dfDeltaAlpha21),
    5958             :            dfMaxDeltaAlpha, dfDeltaEpsilon, 1.0 / 180.0 * M_PI);
    5959             : #endif
    5960        3153 :     int iMidPoint = -1;
    5961        3153 :     double dfLastValidAlpha = alpha2_1;
    5962             : 
    5963        3153 :     double dfLastLogRelDiff = 0;
    5964             : 
    5965        6306 :     OGRPoint p3;
    5966        3153 :     int j = i + 1;  // Used after for.
    5967      181711 :     for (; j + 2 < poLS->getNumPoints(); j++)
    5968             :     {
    5969      178657 :         poLS->getPoint(j, &p1);
    5970      178657 :         poLS->getPoint(j + 1, &p2);
    5971      178657 :         poLS->getPoint(j + 2, &p3);
    5972      178657 :         double R_2 = 0.0;
    5973      178657 :         double cx_2 = 0.0;
    5974      178657 :         double cy_2 = 0.0;
    5975      178657 :         double alpha0_2 = 0.0;
    5976      178657 :         double alpha1_2 = 0.0;
    5977      178657 :         double alpha2_2 = 0.0;
    5978             :         // Check that the new candidate arc shares the same
    5979             :         // radius, center and winding order.
    5980      178657 :         if (!(OGRGeometryFactory::GetCurveParameters(
    5981             :                 p1.getX(), p1.getY(), p2.getX(), p2.getY(), p3.getX(),
    5982             :                 p3.getY(), R_2, cx_2, cy_2, alpha0_2, alpha1_2, alpha2_2)))
    5983             :         {
    5984             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5985             :             printf("End of curve at j=%d\n : straight line", j); /*ok*/
    5986             : #endif
    5987          99 :             break;
    5988             :         }
    5989             : 
    5990      178649 :         const double dfRelDiffR = fabs(R_1 - R_2) * dfInvScale;
    5991      178649 :         const double dfRelDiffCx = fabs(cx_1 - cx_2) * dfInvScale;
    5992      178649 :         const double dfRelDiffCy = fabs(cy_1 - cy_2) * dfInvScale;
    5993             : 
    5994             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5995             :         printf("j=%d: R = %.16g, cx = %.16g, cy = %.16g, " /*ok*/
    5996             :                "rel_diff_R=%.8g rel_diff_cx=%.8g rel_diff_cy=%.8g\n",
    5997             :                j, R_2, cx_2, cy_2, dfRelDiffR, dfRelDiffCx, dfRelDiffCy);
    5998             : #endif
    5999             : 
    6000      178649 :         if (dfRelDiffR > 1.0e-7 || dfRelDiffCx > 1.0e-7 ||
    6001      178580 :             dfRelDiffCy > 1.0e-7 ||
    6002      178580 :             dfDeltaAlpha10 * (alpha1_2 - alpha0_2) < 0.0)
    6003             :         {
    6004             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6005             :             printf("End of curve at j=%d\n", j); /*ok*/
    6006             : #endif
    6007             :             break;
    6008             :         }
    6009             : 
    6010      178580 :         if (dfRelDiffR > 0.0 && dfRelDiffCx > 0.0 && dfRelDiffCy > 0.0)
    6011             :         {
    6012             :             const double dfLogRelDiff = std::min(
    6013      357132 :                 std::min(fabs(log10(dfRelDiffR)), fabs(log10(dfRelDiffCx))),
    6014      178566 :                 fabs(log10(dfRelDiffCy)));
    6015             :             // printf("dfLogRelDiff = %f, dfLastLogRelDiff=%f, "/*ok*/
    6016             :             //        "dfLogRelDiff - dfLastLogRelDiff=%f\n",
    6017             :             //         dfLogRelDiff, dfLastLogRelDiff,
    6018             :             //         dfLogRelDiff - dfLastLogRelDiff);
    6019      178566 :             if (dfLogRelDiff > 0.0 && dfLastLogRelDiff >= 8.0 &&
    6020           2 :                 dfLogRelDiff <= 8.0 && dfLogRelDiff < dfLastLogRelDiff - 2.0)
    6021             :             {
    6022             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6023             :                 printf("End of curve at j=%d. Significant different in " /*ok*/
    6024             :                        "relative error w.r.t previous points\n",
    6025             :                        j);
    6026             : #endif
    6027           2 :                 break;
    6028             :             }
    6029      178564 :             dfLastLogRelDiff = dfLogRelDiff;
    6030             :         }
    6031             : 
    6032      178578 :         const double dfStep10 = fabs(alpha1_2 - alpha0_2);
    6033      178578 :         const double dfStep21 = fabs(alpha2_2 - alpha1_2);
    6034             :         // Check that the angle step is consistent with the original step.
    6035      178578 :         if (!(dfStep10 < 2.0 * dfMaxDeltaAlpha &&
    6036      178578 :               dfStep21 < 2.0 * dfMaxDeltaAlpha))
    6037             :         {
    6038             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6039             :             printf("End of curve at j=%d: dfStep10=%f, dfStep21=%f, " /*ok*/
    6040             :                    "2*dfMaxDeltaAlpha=%f\n",
    6041             :                    j, dfStep10, dfStep21, 2 * dfMaxDeltaAlpha);
    6042             : #endif
    6043             :             break;
    6044             :         }
    6045             : 
    6046      178577 :         if (bValidAlphaRatio && j > i + 1 && (i % 2) != (j % 2))
    6047             :         {
    6048             :             const GUInt32 nAlphaRatioReversed =
    6049       87516 :                 (OGRGF_GetHiddenValue(p1.getX(), p1.getY())
    6050      175032 :                  << HIDDEN_ALPHA_HALF_WIDTH) |
    6051       87516 :                 (OGRGF_GetHiddenValue(p2.getX(), p2.getY()));
    6052             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6053             :             printf("j=%d, nAlphaRatioReversed = %u\n", /*ok*/
    6054             :                    j, nAlphaRatioReversed);
    6055             : #endif
    6056       87516 :             if (!bFoundFFFFFFFFPattern && nAlphaRatioReversed == 0xFFFFFFFF)
    6057             :             {
    6058        3081 :                 bFoundFFFFFFFFPattern = true;
    6059        3081 :                 nCountValidAlphaRatio++;
    6060             :             }
    6061       84435 :             else if (bFoundFFFFFFFFPattern && !bFoundReversedAlphaRatioRef &&
    6062             :                      nAlphaRatioReversed == 0xFFFFFFFF)
    6063             :             {
    6064       81327 :                 nCountValidAlphaRatio++;
    6065             :             }
    6066        3108 :             else if (bFoundFFFFFFFFPattern && !bFoundReversedAlphaRatioRef &&
    6067             :                      nAlphaRatioReversed == nAlphaRatioRef)
    6068             :             {
    6069        3081 :                 bFoundReversedAlphaRatioRef = true;
    6070        3081 :                 nCountValidAlphaRatio++;
    6071             :             }
    6072             :             else
    6073             :             {
    6074          27 :                 if (bInitialConstantStep &&
    6075          26 :                     fabs(dfLastValidAlpha - alpha0_1) >= M_PI &&
    6076             :                     nCountValidAlphaRatio > 10)
    6077             :                 {
    6078             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6079             :                     printf("End of curve at j=%d: " /*ok*/
    6080             :                            "fabs(dfLastValidAlpha - alpha0_1)=%f, "
    6081             :                            "nCountValidAlphaRatio=%d\n",
    6082             :                            j, fabs(dfLastValidAlpha - alpha0_1),
    6083             :                            nCountValidAlphaRatio);
    6084             : #endif
    6085          19 :                     if (dfLastValidAlpha - alpha0_1 > 0)
    6086             :                     {
    6087          21 :                         while (dfLastValidAlpha - alpha0_1 - dfMaxDeltaAlpha -
    6088          14 :                                    M_PI >
    6089          14 :                                -dfMaxDeltaAlpha / 10)
    6090             :                         {
    6091           7 :                             dfLastValidAlpha -= dfMaxDeltaAlpha;
    6092           7 :                             j--;
    6093             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6094             :                             printf(/*ok*/
    6095             :                                    "--> corrected as fabs(dfLastValidAlpha - "
    6096             :                                    "alpha0_1)=%f, j=%d\n",
    6097             :                                    fabs(dfLastValidAlpha - alpha0_1), j);
    6098             : #endif
    6099             :                         }
    6100             :                     }
    6101             :                     else
    6102             :                     {
    6103          36 :                         while (dfLastValidAlpha - alpha0_1 + dfMaxDeltaAlpha +
    6104          24 :                                    M_PI <
    6105          24 :                                dfMaxDeltaAlpha / 10)
    6106             :                         {
    6107          12 :                             dfLastValidAlpha += dfMaxDeltaAlpha;
    6108          12 :                             j--;
    6109             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6110             :                             printf(/*ok*/
    6111             :                                    "--> corrected as fabs(dfLastValidAlpha - "
    6112             :                                    "alpha0_1)=%f, j=%d\n",
    6113             :                                    fabs(dfLastValidAlpha - alpha0_1), j);
    6114             : #endif
    6115             :                         }
    6116             :                     }
    6117          19 :                     poLS->getPoint(j + 1, &p2);
    6118          19 :                     break;
    6119             :                 }
    6120             : 
    6121             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6122             :                 printf("j=%d, nAlphaRatioReversed = %u --> inconsistent " /*ok*/
    6123             :                        "values across arc. Don't use it\n",
    6124             :                        j, nAlphaRatioReversed);
    6125             : #endif
    6126           8 :                 bValidAlphaRatio = false;
    6127             :             }
    6128             :         }
    6129             : 
    6130             :         // Correct current end angle, consistently with start angle.
    6131      178558 :         dfLastValidAlpha = OGRGF_FixAngle(alpha0_1, alpha1_1, alpha2_2);
    6132             : 
    6133             :         // Try to detect the precise intermediate point of the
    6134             :         // arc circle by detecting irregular angle step
    6135             :         // This is OK if we don't detect the right point or fail
    6136             :         // to detect it.
    6137             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6138             :         printf("j=%d A(0,1)-maxDelta=%.8f A(1,2)-maxDelta=%.8f " /*ok*/
    6139             :                "x1=%.8f y1=%.8f x2=%.8f y2=%.8f x3=%.8f y3=%.8f\n",
    6140             :                j, fabs(dfStep10 - dfMaxDeltaAlpha),
    6141             :                fabs(dfStep21 - dfMaxDeltaAlpha), p1.getX(), p1.getY(),
    6142             :                p2.getX(), p2.getY(), p3.getX(), p3.getY());
    6143             : #endif
    6144      178558 :         if (j > i + 1 && iMidPoint < 0 && dfDeltaEpsilon < 1.0 / 180.0 * M_PI)
    6145             :         {
    6146      175073 :             if (fabs(dfStep10 - dfMaxDeltaAlpha) > dfDeltaEpsilon)
    6147           8 :                 iMidPoint = j + ((bInitialConstantStep) ? 0 : 1);
    6148      175065 :             else if (fabs(dfStep21 - dfMaxDeltaAlpha) > dfDeltaEpsilon)
    6149           4 :                 iMidPoint = j + ((bInitialConstantStep) ? 1 : 2);
    6150             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6151             :             if (iMidPoint >= 0)
    6152             :             {
    6153             :                 OGRPoint pMid;
    6154             :                 poLS->getPoint(iMidPoint, &pMid);
    6155             :                 printf("Midpoint detected at j = %d, iMidPoint = %d, " /*ok*/
    6156             :                        "x=%.8f y=%.8f\n",
    6157             :                        j, iMidPoint, pMid.getX(), pMid.getY());
    6158             :             }
    6159             : #endif
    6160             :         }
    6161             :     }
    6162             : 
    6163             :     // Take a minimum threshold of consecutive points
    6164             :     // on the arc to avoid false positives.
    6165        3153 :     if (j < i + 3)
    6166          61 :         return -1;
    6167             : 
    6168        3092 :     bValidAlphaRatio &= bFoundFFFFFFFFPattern && bFoundReversedAlphaRatioRef;
    6169             : 
    6170             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6171             :     printf("bValidAlphaRatio=%d bFoundFFFFFFFFPattern=%d, " /*ok*/
    6172             :            "bFoundReversedAlphaRatioRef=%d\n",
    6173             :            static_cast<int>(bValidAlphaRatio),
    6174             :            static_cast<int>(bFoundFFFFFFFFPattern),
    6175             :            static_cast<int>(bFoundReversedAlphaRatioRef));
    6176             :     printf("alpha0_1=%f dfLastValidAlpha=%f\n", /*ok*/
    6177             :            alpha0_1, dfLastValidAlpha);
    6178             : #endif
    6179             : 
    6180        3092 :     if (poLSNew != nullptr)
    6181             :     {
    6182          11 :         double dfScale2 = std::max(1.0, fabs(p0.getX()));
    6183          11 :         dfScale2 = std::max(dfScale2, fabs(p0.getY()));
    6184             :         // Not strictly necessary, but helps having 'clean' lines without
    6185             :         // duplicated points.
    6186          11 :         constexpr double dfToleranceEps =
    6187             :             OGRCompoundCurve::DEFAULT_TOLERANCE_EPSILON;
    6188          11 :         if (fabs(poLSNew->getX(poLSNew->getNumPoints() - 1) - p0.getX()) >
    6189          12 :                 dfToleranceEps * dfScale2 ||
    6190           1 :             fabs(poLSNew->getY(poLSNew->getNumPoints() - 1) - p0.getY()) >
    6191           1 :                 dfToleranceEps * dfScale2)
    6192          10 :             poLSNew->addPoint(&p0);
    6193          11 :         if (poLSNew->getNumPoints() >= 2)
    6194             :         {
    6195          10 :             if (poCC == nullptr)
    6196           3 :                 poCC = new OGRCompoundCurve();
    6197          10 :             poCC->addCurveDirectly(poLSNew);
    6198             :         }
    6199             :         else
    6200           1 :             delete poLSNew;
    6201          11 :         poLSNew = nullptr;
    6202             :     }
    6203             : 
    6204        3092 :     if (poCS == nullptr)
    6205             :     {
    6206        3068 :         poCS = new OGRCircularString();
    6207        3068 :         poCS->addPoint(&p0);
    6208             :     }
    6209             : 
    6210        3092 :     OGRPoint *poFinalPoint = (j + 2 >= poLS->getNumPoints()) ? &p3 : &p2;
    6211             : 
    6212        3092 :     double dfXMid = 0.0;
    6213        3092 :     double dfYMid = 0.0;
    6214        3092 :     double dfZMid = 0.0;
    6215        3092 :     if (bValidAlphaRatio)
    6216             :     {
    6217             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6218             :         printf("Using alpha ratio...\n"); /*ok*/
    6219             : #endif
    6220        3081 :         double dfAlphaMid = 0.0;
    6221        3081 :         if (OGRGF_NeedSwithArcOrder(p0.getX(), p0.getY(), poFinalPoint->getX(),
    6222             :                                     poFinalPoint->getY()))
    6223             :         {
    6224             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6225             :             printf("Switching angles\n"); /*ok*/
    6226             : #endif
    6227        1546 :             dfAlphaMid = dfLastValidAlpha + nAlphaRatioRef *
    6228        1546 :                                                 (alpha0_1 - dfLastValidAlpha) /
    6229             :                                                 HIDDEN_ALPHA_SCALE;
    6230        1546 :             dfAlphaMid = OGRGF_FixAngle(alpha0_1, dfLastValidAlpha, dfAlphaMid);
    6231             :         }
    6232             :         else
    6233             :         {
    6234        1535 :             dfAlphaMid = alpha0_1 + nAlphaRatioRef *
    6235        1535 :                                         (dfLastValidAlpha - alpha0_1) /
    6236             :                                         HIDDEN_ALPHA_SCALE;
    6237             :         }
    6238             : 
    6239        3081 :         dfXMid = cx_1 + R_1 * cos(dfAlphaMid);
    6240        3081 :         dfYMid = cy_1 + R_1 * sin(dfAlphaMid);
    6241             : 
    6242        3081 :         if (poLS->getCoordinateDimension() == 3)
    6243             :         {
    6244           2 :             double dfLastAlpha = 0.0;
    6245           2 :             double dfLastZ = 0.0;
    6246           2 :             int k = i;  // Used after for.
    6247          48 :             for (; k < j + 2; k++)
    6248             :             {
    6249          48 :                 OGRPoint p;
    6250          48 :                 poLS->getPoint(k, &p);
    6251          48 :                 double dfAlpha = atan2(p.getY() - cy_1, p.getX() - cx_1);
    6252          48 :                 dfAlpha = OGRGF_FixAngle(alpha0_1, dfLastValidAlpha, dfAlpha);
    6253          48 :                 if (k > i &&
    6254          46 :                     ((dfAlpha < dfLastValidAlpha && dfAlphaMid < dfAlpha) ||
    6255          23 :                      (dfAlpha > dfLastValidAlpha && dfAlphaMid > dfAlpha)))
    6256             :                 {
    6257           2 :                     const double dfRatio =
    6258           2 :                         (dfAlphaMid - dfLastAlpha) / (dfAlpha - dfLastAlpha);
    6259           2 :                     dfZMid = (1 - dfRatio) * dfLastZ + dfRatio * p.getZ();
    6260           2 :                     break;
    6261             :                 }
    6262          46 :                 dfLastAlpha = dfAlpha;
    6263          46 :                 dfLastZ = p.getZ();
    6264             :             }
    6265           2 :             if (k == j + 2)
    6266           0 :                 dfZMid = dfLastZ;
    6267           2 :             if (IS_ALMOST_INTEGER(dfZMid))
    6268           2 :                 dfZMid = static_cast<int>(floor(dfZMid + 0.5));
    6269             :         }
    6270             : 
    6271             :         // A few rounding strategies in case the mid point was at "exact"
    6272             :         // coordinates.
    6273        3081 :         if (R_1 > 1e-5)
    6274             :         {
    6275             :             const bool bStartEndInteger =
    6276        9203 :                 IS_ALMOST_INTEGER(p0.getX()) && IS_ALMOST_INTEGER(p0.getY()) &&
    6277        9203 :                 IS_ALMOST_INTEGER(poFinalPoint->getX()) &&
    6278        3062 :                 IS_ALMOST_INTEGER(poFinalPoint->getY());
    6279        3075 :             if (bStartEndInteger &&
    6280        3062 :                 fabs(dfXMid - floor(dfXMid + 0.5)) / dfScale < 1e-4 &&
    6281        3043 :                 fabs(dfYMid - floor(dfYMid + 0.5)) / dfScale < 1e-4)
    6282             :             {
    6283        3043 :                 dfXMid = static_cast<int>(floor(dfXMid + 0.5));
    6284        3043 :                 dfYMid = static_cast<int>(floor(dfYMid + 0.5));
    6285             :                 // Sometimes rounding to closest is not best approach
    6286             :                 // Try neighbouring integers to look for the one that
    6287             :                 // minimize the error w.r.t to the arc center
    6288             :                 // But only do that if the radius is greater than
    6289             :                 // the magnitude of the delta that we will try!
    6290             :                 double dfBestRError =
    6291        3043 :                     fabs(R_1 - DISTANCE(dfXMid, dfYMid, cx_1, cy_1));
    6292             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6293             :                 printf("initial_error=%f\n", dfBestRError); /*ok*/
    6294             : #endif
    6295        3043 :                 int iBestX = 0;
    6296        3043 :                 int iBestY = 0;
    6297        3043 :                 if (dfBestRError > 0.001 && R_1 > 2)
    6298             :                 {
    6299           3 :                     int nSearchRadius = 1;
    6300             :                     // Extend the search radius if the arc circle radius
    6301             :                     // is much higher than the coordinate values.
    6302             :                     double dfMaxCoords =
    6303           3 :                         std::max(fabs(p0.getX()), fabs(p0.getY()));
    6304           3 :                     dfMaxCoords = std::max(dfMaxCoords, poFinalPoint->getX());
    6305           3 :                     dfMaxCoords = std::max(dfMaxCoords, poFinalPoint->getY());
    6306           3 :                     dfMaxCoords = std::max(dfMaxCoords, dfXMid);
    6307           3 :                     dfMaxCoords = std::max(dfMaxCoords, dfYMid);
    6308           3 :                     if (R_1 > dfMaxCoords * 1000)
    6309           3 :                         nSearchRadius = 100;
    6310           0 :                     else if (R_1 > dfMaxCoords * 10)
    6311           0 :                         nSearchRadius = 10;
    6312         606 :                     for (int iY = -nSearchRadius; iY <= nSearchRadius; iY++)
    6313             :                     {
    6314      121806 :                         for (int iX = -nSearchRadius; iX <= nSearchRadius; iX++)
    6315             :                         {
    6316      121203 :                             const double dfCandidateX = dfXMid + iX;
    6317      121203 :                             const double dfCandidateY = dfYMid + iY;
    6318      121203 :                             if (fabs(dfCandidateX - p0.getX()) < 1e-8 &&
    6319           0 :                                 fabs(dfCandidateY - p0.getY()) < 1e-8)
    6320           0 :                                 continue;
    6321      121203 :                             if (fabs(dfCandidateX - poFinalPoint->getX()) <
    6322      121203 :                                     1e-8 &&
    6323           0 :                                 fabs(dfCandidateY - poFinalPoint->getY()) <
    6324             :                                     1e-8)
    6325           0 :                                 continue;
    6326             :                             const double dfRError =
    6327      121203 :                                 fabs(R_1 - DISTANCE(dfCandidateX, dfCandidateY,
    6328      121203 :                                                     cx_1, cy_1));
    6329             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6330             :                             printf("x=%d y=%d error=%f besterror=%f\n", /*ok*/
    6331             :                                    static_cast<int>(dfXMid + iX),
    6332             :                                    static_cast<int>(dfYMid + iY), dfRError,
    6333             :                                    dfBestRError);
    6334             : #endif
    6335      121203 :                             if (dfRError < dfBestRError)
    6336             :                             {
    6337          20 :                                 iBestX = iX;
    6338          20 :                                 iBestY = iY;
    6339          20 :                                 dfBestRError = dfRError;
    6340             :                             }
    6341             :                         }
    6342             :                     }
    6343             :                 }
    6344        3043 :                 dfXMid += iBestX;
    6345        3043 :                 dfYMid += iBestY;
    6346             :             }
    6347             :             else
    6348             :             {
    6349             :                 // Limit the number of significant figures in decimal
    6350             :                 // representation.
    6351          32 :                 if (fabs(dfXMid) < 100000000.0)
    6352             :                 {
    6353          32 :                     dfXMid =
    6354          32 :                         static_cast<GIntBig>(floor(dfXMid * 100000000 + 0.5)) /
    6355             :                         100000000.0;
    6356             :                 }
    6357          32 :                 if (fabs(dfYMid) < 100000000.0)
    6358             :                 {
    6359          32 :                     dfYMid =
    6360          32 :                         static_cast<GIntBig>(floor(dfYMid * 100000000 + 0.5)) /
    6361             :                         100000000.0;
    6362             :                 }
    6363             :             }
    6364             :         }
    6365             : 
    6366             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6367             :         printf("dfAlphaMid=%f, x_mid = %f, y_mid = %f\n", /*ok*/
    6368             :                dfLastValidAlpha, dfXMid, dfYMid);
    6369             : #endif
    6370             :     }
    6371             : 
    6372             :     // If this is a full circle of a non-polygonal zone, we must
    6373             :     // use a 5-point representation to keep the winding order.
    6374        3103 :     if (p0.Equals(poFinalPoint) &&
    6375          11 :         !EQUAL(poLS->getGeometryName(), "LINEARRING"))
    6376             :     {
    6377             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6378             :         printf("Full circle of a non-polygonal zone\n"); /*ok*/
    6379             : #endif
    6380           1 :         poLS->getPoint((i + j + 2) / 4, &p1);
    6381           1 :         poCS->addPoint(&p1);
    6382           1 :         if (bValidAlphaRatio)
    6383             :         {
    6384           1 :             p1.setX(dfXMid);
    6385           1 :             p1.setY(dfYMid);
    6386           1 :             if (poLS->getCoordinateDimension() == 3)
    6387           0 :                 p1.setZ(dfZMid);
    6388             :         }
    6389             :         else
    6390             :         {
    6391           0 :             poLS->getPoint((i + j + 1) / 2, &p1);
    6392             :         }
    6393           1 :         poCS->addPoint(&p1);
    6394           1 :         poLS->getPoint(3 * (i + j + 2) / 4, &p1);
    6395           1 :         poCS->addPoint(&p1);
    6396             :     }
    6397             : 
    6398        3091 :     else if (bValidAlphaRatio)
    6399             :     {
    6400        3080 :         p1.setX(dfXMid);
    6401        3080 :         p1.setY(dfYMid);
    6402        3080 :         if (poLS->getCoordinateDimension() == 3)
    6403           2 :             p1.setZ(dfZMid);
    6404        3080 :         poCS->addPoint(&p1);
    6405             :     }
    6406             : 
    6407             :     // If we have found a candidate for a precise intermediate
    6408             :     // point, use it.
    6409          11 :     else if (iMidPoint >= 1 && iMidPoint < j)
    6410             :     {
    6411           3 :         poLS->getPoint(iMidPoint, &p1);
    6412           3 :         poCS->addPoint(&p1);
    6413             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6414             :         printf("Using detected midpoint...\n");                   /*ok*/
    6415             :         printf("x_mid = %f, y_mid = %f\n", p1.getX(), p1.getY()); /*ok*/
    6416             : #endif
    6417             :     }
    6418             :     // Otherwise pick up the mid point between both extremities.
    6419             :     else
    6420             :     {
    6421           8 :         poLS->getPoint((i + j + 1) / 2, &p1);
    6422           8 :         poCS->addPoint(&p1);
    6423             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6424             :         printf("Pickup 'random' midpoint at index=%d...\n", /*ok*/
    6425             :                (i + j + 1) / 2);
    6426             :         printf("x_mid = %f, y_mid = %f\n", p1.getX(), p1.getY()); /*ok*/
    6427             : #endif
    6428             :     }
    6429        3092 :     poCS->addPoint(poFinalPoint);
    6430             : 
    6431             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6432             :     printf("----------------------------\n"); /*ok*/
    6433             : #endif
    6434             : 
    6435        3092 :     if (j + 2 >= poLS->getNumPoints())
    6436        3054 :         return -2;
    6437          38 :     return j + 1;
    6438             : }
    6439             : 
    6440             : /************************************************************************/
    6441             : /*                        curveFromLineString()                         */
    6442             : /************************************************************************/
    6443             : 
    6444             : /**
    6445             :  * \brief Try to convert a linestring approximating curves into a curve.
    6446             :  *
    6447             :  * This method can return a COMPOUNDCURVE, a CIRCULARSTRING or a LINESTRING.
    6448             :  *
    6449             :  * This method is the reverse of curveFromLineString().
    6450             :  *
    6451             :  * @param poLS handle to the geometry to convert.
    6452             :  * @param papszOptions options as a null-terminated list of strings.
    6453             :  *                     Unused for now. Must be set to NULL.
    6454             :  *
    6455             :  * @return the converted geometry (ownership to caller).
    6456             :  *
    6457             :  */
    6458             : 
    6459        3204 : OGRCurve *OGRGeometryFactory::curveFromLineString(
    6460             :     const OGRLineString *poLS, CPL_UNUSED const char *const *papszOptions)
    6461             : {
    6462        3204 :     OGRCompoundCurve *poCC = nullptr;
    6463        3204 :     OGRCircularString *poCS = nullptr;
    6464        3204 :     OGRLineString *poLSNew = nullptr;
    6465        3204 :     const int nLSNumPoints = poLS->getNumPoints();
    6466        3204 :     const bool bIsClosed = nLSNumPoints >= 4 && poLS->get_IsClosed();
    6467        3632 :     for (int i = 0; i < nLSNumPoints; /* nothing */)
    6468             :     {
    6469        3482 :         const int iNewI = OGRGF_DetectArc(poLS, i, poCC, poCS, poLSNew);
    6470        3482 :         if (iNewI == -2)
    6471        3054 :             break;
    6472         428 :         if (iNewI >= 0)
    6473             :         {
    6474          38 :             i = iNewI;
    6475          38 :             continue;
    6476             :         }
    6477             : 
    6478         390 :         if (poCS != nullptr)
    6479             :         {
    6480          14 :             if (poCC == nullptr)
    6481           5 :                 poCC = new OGRCompoundCurve();
    6482          14 :             poCC->addCurveDirectly(poCS);
    6483          14 :             poCS = nullptr;
    6484             :         }
    6485             : 
    6486         390 :         OGRPoint p;
    6487         390 :         poLS->getPoint(i, &p);
    6488         390 :         if (poLSNew == nullptr)
    6489             :         {
    6490         160 :             poLSNew = new OGRLineString();
    6491         160 :             poLSNew->addPoint(&p);
    6492             :         }
    6493             :         // Not strictly necessary, but helps having 'clean' lines without
    6494             :         // duplicated points.
    6495             :         else
    6496             :         {
    6497         230 :             double dfScale = std::max(1.0, fabs(p.getX()));
    6498         230 :             dfScale = std::max(dfScale, fabs(p.getY()));
    6499         230 :             if (bIsClosed && i == nLSNumPoints - 1)
    6500           7 :                 dfScale = 0;
    6501         230 :             constexpr double dfToleranceEps =
    6502             :                 OGRCompoundCurve::DEFAULT_TOLERANCE_EPSILON;
    6503         230 :             if (fabs(poLSNew->getX(poLSNew->getNumPoints() - 1) - p.getX()) >
    6504         239 :                     dfToleranceEps * dfScale ||
    6505           9 :                 fabs(poLSNew->getY(poLSNew->getNumPoints() - 1) - p.getY()) >
    6506           9 :                     dfToleranceEps * dfScale)
    6507             :             {
    6508         229 :                 poLSNew->addPoint(&p);
    6509             :             }
    6510             :         }
    6511             : 
    6512         390 :         i++;
    6513             :     }
    6514             : 
    6515        3204 :     OGRCurve *poRet = nullptr;
    6516             : 
    6517        3204 :     if (poLSNew != nullptr && poLSNew->getNumPoints() < 2)
    6518             :     {
    6519           1 :         delete poLSNew;
    6520           1 :         poLSNew = nullptr;
    6521           1 :         if (poCC != nullptr)
    6522             :         {
    6523           1 :             if (poCC->getNumCurves() == 1)
    6524             :             {
    6525           1 :                 poRet = poCC->stealCurve(0);
    6526           1 :                 delete poCC;
    6527           1 :                 poCC = nullptr;
    6528             :             }
    6529             :             else
    6530           0 :                 poRet = poCC;
    6531             :         }
    6532             :         else
    6533           0 :             poRet = poLS->clone();
    6534             :     }
    6535        3203 :     else if (poCC != nullptr)
    6536             :     {
    6537           7 :         if (poLSNew)
    6538           6 :             poCC->addCurveDirectly(poLSNew);
    6539             :         else
    6540           1 :             poCC->addCurveDirectly(poCS);
    6541           7 :         poRet = poCC;
    6542             :     }
    6543        3196 :     else if (poLSNew != nullptr)
    6544         142 :         poRet = poLSNew;
    6545        3054 :     else if (poCS != nullptr)
    6546        3053 :         poRet = poCS;
    6547             :     else
    6548           1 :         poRet = poLS->clone();
    6549             : 
    6550        3204 :     poRet->assignSpatialReference(poLS->getSpatialReference());
    6551             : 
    6552        3204 :     return poRet;
    6553             : }
    6554             : 
    6555             : /************************************************************************/
    6556             : /*                   createFromGeoJson( const char* )                   */
    6557             : /************************************************************************/
    6558             : 
    6559             : /**
    6560             :  * @brief Create geometry from GeoJson fragment.
    6561             :  * @param pszJsonString The GeoJSON fragment for the geometry.
    6562             :  * @param nSize (new in GDAL 3.4) Optional length of the string
    6563             :  *              if it is not null-terminated
    6564             :  * @return a geometry on success, or NULL on error.
    6565             :  */
    6566           5 : OGRGeometry *OGRGeometryFactory::createFromGeoJson(const char *pszJsonString,
    6567             :                                                    int nSize)
    6568             : {
    6569          10 :     CPLJSONDocument oDocument;
    6570           5 :     if (!oDocument.LoadMemory(reinterpret_cast<const GByte *>(pszJsonString),
    6571             :                               nSize))
    6572             :     {
    6573           3 :         return nullptr;
    6574             :     }
    6575             : 
    6576           2 :     return createFromGeoJson(oDocument.GetRoot());
    6577             : }
    6578             : 
    6579             : /************************************************************************/
    6580             : /*              createFromGeoJson( const CPLJSONObject& )               */
    6581             : /************************************************************************/
    6582             : 
    6583             : /**
    6584             :  * @brief Create geometry from GeoJson fragment.
    6585             :  * @param oJsonObject The JSONObject class describes the GeoJSON geometry.
    6586             :  * @return a geometry on success, or NULL on error.
    6587             :  */
    6588             : OGRGeometry *
    6589           2 : OGRGeometryFactory::createFromGeoJson(const CPLJSONObject &oJsonObject)
    6590             : {
    6591           2 :     if (!oJsonObject.IsValid())
    6592             :     {
    6593           0 :         return nullptr;
    6594             :     }
    6595             : 
    6596             :     // TODO: Move from GeoJSON driver functions create geometry here, and
    6597             :     // replace json-c specific json_object to CPLJSONObject
    6598           4 :     return OGRGeoJSONReadGeometry(
    6599           2 :                static_cast<json_object *>(oJsonObject.GetInternalHandle()),
    6600             :                /* bHasM = */ false, /* OGRSpatialReference* = */ nullptr)
    6601           2 :         .release();
    6602             : }

Generated by: LCOV version 1.14