LCOV - code coverage report
Current view: top level - ogr - ogrgeometryfactory.cpp (source / functions) Hit Total Coverage
Test: gdal_filtered.info Lines: 2342 2560 91.5 %
Date: 2025-07-09 17:50:03 Functions: 80 82 97.6 %

          Line data    Source code
       1             : /******************************************************************************
       2             :  *
       3             :  * Project:  OpenGIS Simple Features Reference Implementation
       4             :  * Purpose:  Factory for converting geometry to and from well known binary
       5             :  *           format.
       6             :  * Author:   Frank Warmerdam, warmerdam@pobox.com
       7             :  *
       8             :  ******************************************************************************
       9             :  * Copyright (c) 1999, Frank Warmerdam
      10             :  * Copyright (c) 2008-2014, Even Rouault <even dot rouault at spatialys dot com>
      11             :  *
      12             :  * SPDX-License-Identifier: MIT
      13             :  ****************************************************************************/
      14             : 
      15             : #include "cpl_port.h"
      16             : 
      17             : #include "cpl_conv.h"
      18             : #include "cpl_error.h"
      19             : #include "cpl_string.h"
      20             : #include "ogr_geometry.h"
      21             : #include "ogr_api.h"
      22             : #include "ogr_core.h"
      23             : #include "ogr_geos.h"
      24             : #include "ogr_sfcgal.h"
      25             : #include "ogr_p.h"
      26             : #include "ogr_spatialref.h"
      27             : #include "ogr_srs_api.h"
      28             : #ifdef HAVE_GEOS
      29             : #include "geos_c.h"
      30             : #endif
      31             : 
      32             : #include "ogrgeojsongeometry.h"
      33             : 
      34             : #include <cassert>
      35             : #include <climits>
      36             : #include <cmath>
      37             : #include <cstdlib>
      38             : #include <cstring>
      39             : #include <cstddef>
      40             : 
      41             : #include <algorithm>
      42             : #include <limits>
      43             : #include <new>
      44             : #include <utility>
      45             : #include <vector>
      46             : 
      47             : #ifndef HAVE_GEOS
      48             : #define UNUSED_IF_NO_GEOS CPL_UNUSED
      49             : #else
      50             : #define UNUSED_IF_NO_GEOS
      51             : #endif
      52             : 
      53             : /************************************************************************/
      54             : /*                           createFromWkb()                            */
      55             : /************************************************************************/
      56             : 
      57             : /**
      58             :  * \brief Create a geometry object of the appropriate type from its
      59             :  * well known binary representation.
      60             :  *
      61             :  * Note that if nBytes is passed as zero, no checking can be done on whether
      62             :  * the pabyData is sufficient.  This can result in a crash if the input
      63             :  * data is corrupt.  This function returns no indication of the number of
      64             :  * bytes from the data source actually used to represent the returned
      65             :  * geometry object.  Use OGRGeometry::WkbSize() on the returned geometry to
      66             :  * establish the number of bytes it required in WKB format.
      67             :  *
      68             :  * Also note that this is a static method, and that there
      69             :  * is no need to instantiate an OGRGeometryFactory object.
      70             :  *
      71             :  * The C function OGR_G_CreateFromWkb() is the same as this method.
      72             :  *
      73             :  * @param pabyData pointer to the input BLOB data.
      74             :  * @param poSR pointer to the spatial reference to be assigned to the
      75             :  *             created geometry object.  This may be NULL.
      76             :  * @param ppoReturn the newly created geometry object will be assigned to the
      77             :  *                  indicated pointer on return.  This will be NULL in case
      78             :  *                  of failure. If not NULL, *ppoReturn should be freed with
      79             :  *                  OGRGeometryFactory::destroyGeometry() after use.
      80             :  * @param nBytes the number of bytes available in pabyData, or -1 if it isn't
      81             :  *               known
      82             :  * @param eWkbVariant WKB variant.
      83             :  *
      84             :  * @return OGRERR_NONE if all goes well, otherwise any of
      85             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
      86             :  * OGRERR_CORRUPT_DATA may be returned.
      87             :  */
      88             : 
      89       59044 : OGRErr OGRGeometryFactory::createFromWkb(const void *pabyData,
      90             :                                          const OGRSpatialReference *poSR,
      91             :                                          OGRGeometry **ppoReturn, size_t nBytes,
      92             :                                          OGRwkbVariant eWkbVariant)
      93             : 
      94             : {
      95       59044 :     size_t nBytesConsumedOutIgnored = 0;
      96       59044 :     return createFromWkb(pabyData, poSR, ppoReturn, nBytes, eWkbVariant,
      97      118088 :                          nBytesConsumedOutIgnored);
      98             : }
      99             : 
     100             : /**
     101             :  * \brief Create a geometry object of the appropriate type from its
     102             :  * well known binary representation.
     103             :  *
     104             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     105             :  * the pabyData is sufficient.  This can result in a crash if the input
     106             :  * data is corrupt.  This function returns no indication of the number of
     107             :  * bytes from the data source actually used to represent the returned
     108             :  * geometry object.  Use OGRGeometry::WkbSize() on the returned geometry to
     109             :  * establish the number of bytes it required in WKB format.
     110             :  *
     111             :  * Also note that this is a static method, and that there
     112             :  * is no need to instantiate an OGRGeometryFactory object.
     113             :  *
     114             :  * The C function OGR_G_CreateFromWkb() is the same as this method.
     115             :  *
     116             :  * @param pabyData pointer to the input BLOB data.
     117             :  * @param poSR pointer to the spatial reference to be assigned to the
     118             :  *             created geometry object.  This may be NULL.
     119             :  * @param ppoReturn the newly created geometry object will be assigned to the
     120             :  *                  indicated pointer on return.  This will be NULL in case
     121             :  *                  of failure. If not NULL, *ppoReturn should be freed with
     122             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     123             :  * @param nBytes the number of bytes available in pabyData, or -1 if it isn't
     124             :  *               known
     125             :  * @param eWkbVariant WKB variant.
     126             :  * @param nBytesConsumedOut output parameter. Number of bytes consumed.
     127             :  *
     128             :  * @return OGRERR_NONE if all goes well, otherwise any of
     129             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     130             :  * OGRERR_CORRUPT_DATA may be returned.
     131             :  * @since GDAL 2.3
     132             :  */
     133             : 
     134       98066 : OGRErr OGRGeometryFactory::createFromWkb(const void *pabyData,
     135             :                                          const OGRSpatialReference *poSR,
     136             :                                          OGRGeometry **ppoReturn, size_t nBytes,
     137             :                                          OGRwkbVariant eWkbVariant,
     138             :                                          size_t &nBytesConsumedOut)
     139             : 
     140             : {
     141       98066 :     const GByte *l_pabyData = static_cast<const GByte *>(pabyData);
     142       98066 :     nBytesConsumedOut = 0;
     143       98066 :     *ppoReturn = nullptr;
     144             : 
     145       98066 :     if (nBytes < 9 && nBytes != static_cast<size_t>(-1))
     146        1393 :         return OGRERR_NOT_ENOUGH_DATA;
     147             : 
     148             :     /* -------------------------------------------------------------------- */
     149             :     /*      Get the byte order byte.  The extra tests are to work around    */
     150             :     /*      bug sin the WKB of DB2 v7.2 as identified by Safe Software.     */
     151             :     /* -------------------------------------------------------------------- */
     152       96673 :     const int nByteOrder = DB2_V72_FIX_BYTE_ORDER(*l_pabyData);
     153       96673 :     if (nByteOrder != wkbXDR && nByteOrder != wkbNDR)
     154             :     {
     155         293 :         CPLDebug("OGR",
     156             :                  "OGRGeometryFactory::createFromWkb() - got corrupt data.\n"
     157             :                  "%02X%02X%02X%02X%02X%02X%02X%02X%02X",
     158         293 :                  l_pabyData[0], l_pabyData[1], l_pabyData[2], l_pabyData[3],
     159         293 :                  l_pabyData[4], l_pabyData[5], l_pabyData[6], l_pabyData[7],
     160         293 :                  l_pabyData[8]);
     161         293 :         return OGRERR_CORRUPT_DATA;
     162             :     }
     163             : 
     164             :     /* -------------------------------------------------------------------- */
     165             :     /*      Get the geometry feature type.  For now we assume that          */
     166             :     /*      geometry type is between 0 and 255 so we only have to fetch     */
     167             :     /*      one byte.                                                       */
     168             :     /* -------------------------------------------------------------------- */
     169             : 
     170       96380 :     OGRwkbGeometryType eGeometryType = wkbUnknown;
     171             :     const OGRErr err =
     172       96380 :         OGRReadWKBGeometryType(l_pabyData, eWkbVariant, &eGeometryType);
     173             : 
     174       96380 :     if (err != OGRERR_NONE)
     175         563 :         return err;
     176             : 
     177             :     /* -------------------------------------------------------------------- */
     178             :     /*      Instantiate a geometry of the appropriate type, and             */
     179             :     /*      initialize from the input stream.                               */
     180             :     /* -------------------------------------------------------------------- */
     181       95817 :     OGRGeometry *poGeom = createGeometry(eGeometryType);
     182             : 
     183       95817 :     if (poGeom == nullptr)
     184           0 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
     185             : 
     186             :     /* -------------------------------------------------------------------- */
     187             :     /*      Import from binary.                                             */
     188             :     /* -------------------------------------------------------------------- */
     189      191634 :     const OGRErr eErr = poGeom->importFromWkb(l_pabyData, nBytes, eWkbVariant,
     190       95817 :                                               nBytesConsumedOut);
     191       95817 :     if (eErr != OGRERR_NONE)
     192             :     {
     193        7315 :         delete poGeom;
     194        7315 :         return eErr;
     195             :     }
     196             : 
     197             :     /* -------------------------------------------------------------------- */
     198             :     /*      Assign spatial reference system.                                */
     199             :     /* -------------------------------------------------------------------- */
     200             : 
     201       92063 :     if (poGeom->hasCurveGeometry() &&
     202        3561 :         CPLTestBool(CPLGetConfigOption("OGR_STROKE_CURVE", "FALSE")))
     203             :     {
     204           5 :         OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
     205           5 :         delete poGeom;
     206           5 :         poGeom = poNewGeom;
     207             :     }
     208       88502 :     poGeom->assignSpatialReference(poSR);
     209       88502 :     *ppoReturn = poGeom;
     210             : 
     211       88502 :     return OGRERR_NONE;
     212             : }
     213             : 
     214             : /************************************************************************/
     215             : /*                        OGR_G_CreateFromWkb()                         */
     216             : /************************************************************************/
     217             : /**
     218             :  * \brief Create a geometry object of the appropriate type from its
     219             :  * well known binary representation.
     220             :  *
     221             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     222             :  * the pabyData is sufficient.  This can result in a crash if the input
     223             :  * data is corrupt.  This function returns no indication of the number of
     224             :  * bytes from the data source actually used to represent the returned
     225             :  * geometry object.  Use OGR_G_WkbSize() on the returned geometry to
     226             :  * establish the number of bytes it required in WKB format.
     227             :  *
     228             :  * The OGRGeometryFactory::createFromWkb() CPP method is the same as this
     229             :  * function.
     230             :  *
     231             :  * @param pabyData pointer to the input BLOB data.
     232             :  * @param hSRS handle to the spatial reference to be assigned to the
     233             :  *             created geometry object.  This may be NULL.
     234             :  * @param phGeometry the newly created geometry object will
     235             :  * be assigned to the indicated handle on return.  This will be NULL in case
     236             :  * of failure. If not NULL, *phGeometry should be freed with
     237             :  * OGR_G_DestroyGeometry() after use.
     238             :  * @param nBytes the number of bytes of data available in pabyData, or -1
     239             :  * if it is not known, but assumed to be sufficient.
     240             :  *
     241             :  * @return OGRERR_NONE if all goes well, otherwise any of
     242             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     243             :  * OGRERR_CORRUPT_DATA may be returned.
     244             :  */
     245             : 
     246           2 : OGRErr CPL_DLL OGR_G_CreateFromWkb(const void *pabyData,
     247             :                                    OGRSpatialReferenceH hSRS,
     248             :                                    OGRGeometryH *phGeometry, int nBytes)
     249             : 
     250             : {
     251           2 :     return OGRGeometryFactory::createFromWkb(
     252           2 :         pabyData, OGRSpatialReference::FromHandle(hSRS),
     253           2 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes);
     254             : }
     255             : 
     256             : /************************************************************************/
     257             : /*                      OGR_G_CreateFromWkbEx()                         */
     258             : /************************************************************************/
     259             : /**
     260             :  * \brief Create a geometry object of the appropriate type from its
     261             :  * well known binary representation.
     262             :  *
     263             :  * Note that if nBytes is passed as zero, no checking can be done on whether
     264             :  * the pabyData is sufficient.  This can result in a crash if the input
     265             :  * data is corrupt.  This function returns no indication of the number of
     266             :  * bytes from the data source actually used to represent the returned
     267             :  * geometry object.  Use OGR_G_WkbSizeEx() on the returned geometry to
     268             :  * establish the number of bytes it required in WKB format.
     269             :  *
     270             :  * The OGRGeometryFactory::createFromWkb() CPP method is the same as this
     271             :  * function.
     272             :  *
     273             :  * @param pabyData pointer to the input BLOB data.
     274             :  * @param hSRS handle to the spatial reference to be assigned to the
     275             :  *             created geometry object.  This may be NULL.
     276             :  * @param phGeometry the newly created geometry object will
     277             :  * be assigned to the indicated handle on return.  This will be NULL in case
     278             :  * of failure. If not NULL, *phGeometry should be freed with
     279             :  * OGR_G_DestroyGeometry() after use.
     280             :  * @param nBytes the number of bytes of data available in pabyData, or -1
     281             :  * if it is not known, but assumed to be sufficient.
     282             :  *
     283             :  * @return OGRERR_NONE if all goes well, otherwise any of
     284             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     285             :  * OGRERR_CORRUPT_DATA may be returned.
     286             :  * @since GDAL 3.3
     287             :  */
     288             : 
     289       31028 : OGRErr CPL_DLL OGR_G_CreateFromWkbEx(const void *pabyData,
     290             :                                      OGRSpatialReferenceH hSRS,
     291             :                                      OGRGeometryH *phGeometry, size_t nBytes)
     292             : 
     293             : {
     294       31028 :     return OGRGeometryFactory::createFromWkb(
     295       31028 :         pabyData, OGRSpatialReference::FromHandle(hSRS),
     296       31028 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes);
     297             : }
     298             : 
     299             : /************************************************************************/
     300             : /*                           createFromWkt()                            */
     301             : /************************************************************************/
     302             : 
     303             : /**
     304             :  * \brief Create a geometry object of the appropriate type from its
     305             :  * well known text representation.
     306             :  *
     307             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     308             :  *
     309             :  * @param ppszData input zero terminated string containing well known text
     310             :  *                representation of the geometry to be created.  The pointer
     311             :  *                is updated to point just beyond that last character consumed.
     312             :  * @param poSR pointer to the spatial reference to be assigned to the
     313             :  *             created geometry object.  This may be NULL.
     314             :  * @param ppoReturn the newly created geometry object will be assigned to the
     315             :  *                  indicated pointer on return.  This will be NULL if the
     316             :  *                  method fails. If not NULL, *ppoReturn should be freed with
     317             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     318             :  *
     319             :  *  <b>Example:</b>
     320             :  *
     321             :  * \code{.cpp}
     322             :  *    const char* wkt= "POINT(0 0)";
     323             :  *
     324             :  *    // cast because OGR_G_CreateFromWkt will move the pointer
     325             :  *    char* pszWkt = (char*) wkt;
     326             :  *    OGRSpatialReferenceH ref = OSRNewSpatialReference(NULL);
     327             :  *    OGRGeometryH new_geom;
     328             :  *    OSRSetAxisMappingStrategy(poSR, OAMS_TRADITIONAL_GIS_ORDER);
     329             :  *    OGRErr err = OGR_G_CreateFromWkt(&pszWkt, ref, &new_geom);
     330             :  * \endcode
     331             :  *
     332             :  *
     333             :  *
     334             :  * @return OGRERR_NONE if all goes well, otherwise any of
     335             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     336             :  * OGRERR_CORRUPT_DATA may be returned.
     337             :  */
     338             : 
     339      123538 : OGRErr OGRGeometryFactory::createFromWkt(const char **ppszData,
     340             :                                          const OGRSpatialReference *poSR,
     341             :                                          OGRGeometry **ppoReturn)
     342             : 
     343             : {
     344      123538 :     const char *pszInput = *ppszData;
     345      123538 :     *ppoReturn = nullptr;
     346             : 
     347             :     /* -------------------------------------------------------------------- */
     348             :     /*      Get the first token, which should be the geometry type.         */
     349             :     /* -------------------------------------------------------------------- */
     350      123538 :     char szToken[OGR_WKT_TOKEN_MAX] = {};
     351      123538 :     if (OGRWktReadToken(pszInput, szToken) == nullptr)
     352           0 :         return OGRERR_CORRUPT_DATA;
     353             : 
     354             :     /* -------------------------------------------------------------------- */
     355             :     /*      Instantiate a geometry of the appropriate type.                 */
     356             :     /* -------------------------------------------------------------------- */
     357      123538 :     OGRGeometry *poGeom = nullptr;
     358      123538 :     if (STARTS_WITH_CI(szToken, "POINT"))
     359             :     {
     360       97232 :         poGeom = new OGRPoint();
     361             :     }
     362       26306 :     else if (STARTS_WITH_CI(szToken, "LINESTRING"))
     363             :     {
     364        1654 :         poGeom = new OGRLineString();
     365             :     }
     366       24652 :     else if (STARTS_WITH_CI(szToken, "POLYGON"))
     367             :     {
     368       16243 :         poGeom = new OGRPolygon();
     369             :     }
     370        8409 :     else if (STARTS_WITH_CI(szToken, "TRIANGLE"))
     371             :     {
     372          62 :         poGeom = new OGRTriangle();
     373             :     }
     374        8347 :     else if (STARTS_WITH_CI(szToken, "GEOMETRYCOLLECTION"))
     375             :     {
     376         518 :         poGeom = new OGRGeometryCollection();
     377             :     }
     378        7829 :     else if (STARTS_WITH_CI(szToken, "MULTIPOLYGON"))
     379             :     {
     380         914 :         poGeom = new OGRMultiPolygon();
     381             :     }
     382        6915 :     else if (STARTS_WITH_CI(szToken, "MULTIPOINT"))
     383             :     {
     384         583 :         poGeom = new OGRMultiPoint();
     385             :     }
     386        6332 :     else if (STARTS_WITH_CI(szToken, "MULTILINESTRING"))
     387             :     {
     388         628 :         poGeom = new OGRMultiLineString();
     389             :     }
     390        5704 :     else if (STARTS_WITH_CI(szToken, "CIRCULARSTRING"))
     391             :     {
     392        3514 :         poGeom = new OGRCircularString();
     393             :     }
     394        2190 :     else if (STARTS_WITH_CI(szToken, "COMPOUNDCURVE"))
     395             :     {
     396         298 :         poGeom = new OGRCompoundCurve();
     397             :     }
     398        1892 :     else if (STARTS_WITH_CI(szToken, "CURVEPOLYGON"))
     399             :     {
     400         322 :         poGeom = new OGRCurvePolygon();
     401             :     }
     402        1570 :     else if (STARTS_WITH_CI(szToken, "MULTICURVE"))
     403             :     {
     404         141 :         poGeom = new OGRMultiCurve();
     405             :     }
     406        1429 :     else if (STARTS_WITH_CI(szToken, "MULTISURFACE"))
     407             :     {
     408         157 :         poGeom = new OGRMultiSurface();
     409             :     }
     410             : 
     411        1272 :     else if (STARTS_WITH_CI(szToken, "POLYHEDRALSURFACE"))
     412             :     {
     413          69 :         poGeom = new OGRPolyhedralSurface();
     414             :     }
     415             : 
     416        1203 :     else if (STARTS_WITH_CI(szToken, "TIN"))
     417             :     {
     418         122 :         poGeom = new OGRTriangulatedSurface();
     419             :     }
     420             : 
     421             :     else
     422             :     {
     423        1081 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
     424             :     }
     425             : 
     426             :     /* -------------------------------------------------------------------- */
     427             :     /*      Do the import.                                                  */
     428             :     /* -------------------------------------------------------------------- */
     429      122457 :     const OGRErr eErr = poGeom->importFromWkt(&pszInput);
     430             : 
     431             :     /* -------------------------------------------------------------------- */
     432             :     /*      Assign spatial reference system.                                */
     433             :     /* -------------------------------------------------------------------- */
     434      122457 :     if (eErr == OGRERR_NONE)
     435             :     {
     436      126622 :         if (poGeom->hasCurveGeometry() &&
     437        4404 :             CPLTestBool(CPLGetConfigOption("OGR_STROKE_CURVE", "FALSE")))
     438             :         {
     439           9 :             OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
     440           9 :             delete poGeom;
     441           9 :             poGeom = poNewGeom;
     442             :         }
     443      122218 :         poGeom->assignSpatialReference(poSR);
     444      122218 :         *ppoReturn = poGeom;
     445      122218 :         *ppszData = pszInput;
     446             :     }
     447             :     else
     448             :     {
     449         239 :         delete poGeom;
     450             :     }
     451             : 
     452      122457 :     return eErr;
     453             : }
     454             : 
     455             : /**
     456             :  * \brief Create a geometry object of the appropriate type from its
     457             :  * well known text representation.
     458             :  *
     459             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     460             :  *
     461             :  * @param pszData input zero terminated string containing well known text
     462             :  *                representation of the geometry to be created.
     463             :  * @param poSR pointer to the spatial reference to be assigned to the
     464             :  *             created geometry object.  This may be NULL.
     465             :  * @param ppoReturn the newly created geometry object will be assigned to the
     466             :  *                  indicated pointer on return.  This will be NULL if the
     467             :  *                  method fails. If not NULL, *ppoReturn should be freed with
     468             :  *                  OGRGeometryFactory::destroyGeometry() after use.
     469             : 
     470             :  * @return OGRERR_NONE if all goes well, otherwise any of
     471             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     472             :  * OGRERR_CORRUPT_DATA may be returned.
     473             :  * @since GDAL 2.3
     474             :  */
     475             : 
     476        2060 : OGRErr OGRGeometryFactory::createFromWkt(const char *pszData,
     477             :                                          const OGRSpatialReference *poSR,
     478             :                                          OGRGeometry **ppoReturn)
     479             : 
     480             : {
     481        2060 :     return createFromWkt(&pszData, poSR, ppoReturn);
     482             : }
     483             : 
     484             : /**
     485             :  * \brief Create a geometry object of the appropriate type from its
     486             :  * well known text representation.
     487             :  *
     488             :  * The C function OGR_G_CreateFromWkt() is the same as this method.
     489             :  *
     490             :  * @param pszData input zero terminated string containing well known text
     491             :  *                representation of the geometry to be created.
     492             :  * @param poSR pointer to the spatial reference to be assigned to the
     493             :  *             created geometry object.  This may be NULL.
     494             : 
     495             :  * @return a pair of the newly created geometry an error code of OGRERR_NONE
     496             :  * if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA,
     497             :  * OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA.
     498             :  *
     499             :  * @since GDAL 3.11
     500             :  */
     501             : 
     502             : std::pair<std::unique_ptr<OGRGeometry>, OGRErr>
     503        3756 : OGRGeometryFactory::createFromWkt(const char *pszData,
     504             :                                   const OGRSpatialReference *poSR)
     505             : 
     506             : {
     507        3756 :     std::unique_ptr<OGRGeometry> poGeom;
     508             :     OGRGeometry *poTmpGeom;
     509        3756 :     auto err = createFromWkt(&pszData, poSR, &poTmpGeom);
     510        3756 :     poGeom.reset(poTmpGeom);
     511             : 
     512        7512 :     return {std::move(poGeom), err};
     513             : }
     514             : 
     515             : /************************************************************************/
     516             : /*                        OGR_G_CreateFromWkt()                         */
     517             : /************************************************************************/
     518             : /**
     519             :  * \brief Create a geometry object of the appropriate type from its well known
     520             :  * text representation.
     521             :  *
     522             :  * The OGRGeometryFactory::createFromWkt CPP method is the same as this
     523             :  * function.
     524             :  *
     525             :  * @param ppszData input zero terminated string containing well known text
     526             :  *                representation of the geometry to be created.  The pointer
     527             :  *                is updated to point just beyond that last character consumed.
     528             :  * @param hSRS handle to the spatial reference to be assigned to the
     529             :  *             created geometry object.  This may be NULL.
     530             :  * @param phGeometry the newly created geometry object will be assigned to the
     531             :  *                  indicated handle on return.  This will be NULL if the
     532             :  *                  method fails. If not NULL, *phGeometry should be freed with
     533             :  *                  OGR_G_DestroyGeometry() after use.
     534             :  *
     535             :  * @return OGRERR_NONE if all goes well, otherwise any of
     536             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
     537             :  * OGRERR_CORRUPT_DATA may be returned.
     538             :  */
     539             : 
     540      116054 : OGRErr CPL_DLL OGR_G_CreateFromWkt(char **ppszData, OGRSpatialReferenceH hSRS,
     541             :                                    OGRGeometryH *phGeometry)
     542             : 
     543             : {
     544      116054 :     return OGRGeometryFactory::createFromWkt(
     545             :         const_cast<const char **>(ppszData),
     546      116054 :         OGRSpatialReference::FromHandle(hSRS),
     547      116054 :         reinterpret_cast<OGRGeometry **>(phGeometry));
     548             : }
     549             : 
     550             : /************************************************************************/
     551             : /*                    OGR_G_CreateFromEnvelope()                        */
     552             : /************************************************************************/
     553             : /**
     554             :  * \brief Create a Polygon geometry from an envelope
     555             :  *
     556             :  *
     557             :  * @param dfMinX minimum X coordinate
     558             :  * @param dfMinY minimum Y coordinate
     559             :  * @param dfMaxX maximum X coordinate
     560             :  * @param dfMaxY maximum Y coordinate
     561             :  * @param hSRS handle to the spatial reference to be assigned to the
     562             :  *             created geometry object. This may be NULL.
     563             :  *
     564             :  * @return the newly created geometry. Should be freed with
     565             :  *          OGR_G_DestroyGeometry() after use.
     566             :  * @since 3.12
     567             :  */
     568             : 
     569           1 : OGRGeometryH CPL_DLL OGR_G_CreateFromEnvelope(double dfMinX, double dfMinY,
     570             :                                               double dfMaxX, double dfMaxY,
     571             :                                               OGRSpatialReferenceH hSRS)
     572             : 
     573             : {
     574             :     auto poPolygon =
     575           2 :         std::make_unique<OGRPolygon>(dfMinX, dfMinY, dfMaxX, dfMaxY);
     576             : 
     577           1 :     if (hSRS)
     578             :     {
     579           2 :         poPolygon->assignSpatialReference(
     580           1 :             OGRSpatialReference::FromHandle(hSRS));
     581             :     }
     582             : 
     583           2 :     return OGRGeometry::ToHandle(poPolygon.release());
     584             : }
     585             : 
     586             : /************************************************************************/
     587             : /*                           createGeometry()                           */
     588             : /************************************************************************/
     589             : 
     590             : /**
     591             :  * \brief Create an empty geometry of desired type.
     592             :  *
     593             :  * This is equivalent to allocating the desired geometry with new, but
     594             :  * the allocation is guaranteed to take place in the context of the
     595             :  * GDAL/OGR heap.
     596             :  *
     597             :  * This method is the same as the C function OGR_G_CreateGeometry().
     598             :  *
     599             :  * @param eGeometryType the type code of the geometry class to be instantiated.
     600             :  *
     601             :  * @return the newly create geometry or NULL on failure. Should be freed with
     602             :  *          OGRGeometryFactory::destroyGeometry() after use.
     603             :  */
     604             : 
     605             : OGRGeometry *
     606      264696 : OGRGeometryFactory::createGeometry(OGRwkbGeometryType eGeometryType)
     607             : 
     608             : {
     609      264696 :     OGRGeometry *poGeom = nullptr;
     610      264696 :     switch (wkbFlatten(eGeometryType))
     611             :     {
     612      182995 :         case wkbPoint:
     613      365990 :             poGeom = new (std::nothrow) OGRPoint();
     614      182995 :             break;
     615             : 
     616       11768 :         case wkbLineString:
     617       23536 :             poGeom = new (std::nothrow) OGRLineString();
     618       11768 :             break;
     619             : 
     620       28905 :         case wkbPolygon:
     621       57810 :             poGeom = new (std::nothrow) OGRPolygon();
     622       28905 :             break;
     623             : 
     624        1981 :         case wkbGeometryCollection:
     625        3962 :             poGeom = new (std::nothrow) OGRGeometryCollection();
     626        1981 :             break;
     627             : 
     628        3138 :         case wkbMultiPolygon:
     629        6276 :             poGeom = new (std::nothrow) OGRMultiPolygon();
     630        3138 :             break;
     631             : 
     632        1401 :         case wkbMultiPoint:
     633        2802 :             poGeom = new (std::nothrow) OGRMultiPoint();
     634        1401 :             break;
     635             : 
     636        1922 :         case wkbMultiLineString:
     637        3844 :             poGeom = new (std::nothrow) OGRMultiLineString();
     638        1922 :             break;
     639             : 
     640          60 :         case wkbLinearRing:
     641         120 :             poGeom = new (std::nothrow) OGRLinearRing();
     642          60 :             break;
     643             : 
     644          69 :         case wkbCircularString:
     645         138 :             poGeom = new (std::nothrow) OGRCircularString();
     646          69 :             break;
     647             : 
     648        1982 :         case wkbCompoundCurve:
     649        3964 :             poGeom = new (std::nothrow) OGRCompoundCurve();
     650        1982 :             break;
     651             : 
     652          46 :         case wkbCurvePolygon:
     653          92 :             poGeom = new (std::nothrow) OGRCurvePolygon();
     654          46 :             break;
     655             : 
     656        1121 :         case wkbMultiCurve:
     657        2242 :             poGeom = new (std::nothrow) OGRMultiCurve();
     658        1121 :             break;
     659             : 
     660        1183 :         case wkbMultiSurface:
     661        2366 :             poGeom = new (std::nothrow) OGRMultiSurface();
     662        1183 :             break;
     663             : 
     664       14502 :         case wkbTriangle:
     665       29004 :             poGeom = new (std::nothrow) OGRTriangle();
     666       14502 :             break;
     667             : 
     668        7379 :         case wkbPolyhedralSurface:
     669       14758 :             poGeom = new (std::nothrow) OGRPolyhedralSurface();
     670        7379 :             break;
     671             : 
     672        6243 :         case wkbTIN:
     673       12486 :             poGeom = new (std::nothrow) OGRTriangulatedSurface();
     674        6243 :             break;
     675             : 
     676           1 :         case wkbUnknown:
     677           1 :             break;
     678             : 
     679           0 :         default:
     680           0 :             CPLAssert(false);
     681             :             break;
     682             :     }
     683      264696 :     if (poGeom)
     684             :     {
     685      264695 :         if (OGR_GT_HasZ(eGeometryType))
     686       64745 :             poGeom->set3D(true);
     687      264695 :         if (OGR_GT_HasM(eGeometryType))
     688       59822 :             poGeom->setMeasured(true);
     689             :     }
     690      264696 :     return poGeom;
     691             : }
     692             : 
     693             : /************************************************************************/
     694             : /*                        OGR_G_CreateGeometry()                        */
     695             : /************************************************************************/
     696             : /**
     697             :  * \brief Create an empty geometry of desired type.
     698             :  *
     699             :  * This is equivalent to allocating the desired geometry with new, but
     700             :  * the allocation is guaranteed to take place in the context of the
     701             :  * GDAL/OGR heap.
     702             :  *
     703             :  * This function is the same as the CPP method
     704             :  * OGRGeometryFactory::createGeometry.
     705             :  *
     706             :  * @param eGeometryType the type code of the geometry to be created.
     707             :  *
     708             :  * @return handle to the newly create geometry or NULL on failure. Should be
     709             :  *         freed with OGR_G_DestroyGeometry() after use.
     710             :  */
     711             : 
     712      165612 : OGRGeometryH OGR_G_CreateGeometry(OGRwkbGeometryType eGeometryType)
     713             : 
     714             : {
     715      165612 :     return OGRGeometry::ToHandle(
     716      165612 :         OGRGeometryFactory::createGeometry(eGeometryType));
     717             : }
     718             : 
     719             : /************************************************************************/
     720             : /*                          destroyGeometry()                           */
     721             : /************************************************************************/
     722             : 
     723             : /**
     724             :  * \brief Destroy geometry object.
     725             :  *
     726             :  * Equivalent to invoking delete on a geometry, but it guaranteed to take
     727             :  * place within the context of the GDAL/OGR heap.
     728             :  *
     729             :  * This method is the same as the C function OGR_G_DestroyGeometry().
     730             :  *
     731             :  * @param poGeom the geometry to deallocate.
     732             :  */
     733             : 
     734           2 : void OGRGeometryFactory::destroyGeometry(OGRGeometry *poGeom)
     735             : 
     736             : {
     737           2 :     delete poGeom;
     738           2 : }
     739             : 
     740             : /************************************************************************/
     741             : /*                        OGR_G_DestroyGeometry()                       */
     742             : /************************************************************************/
     743             : /**
     744             :  * \brief Destroy geometry object.
     745             :  *
     746             :  * Equivalent to invoking delete on a geometry, but it guaranteed to take
     747             :  * place within the context of the GDAL/OGR heap.
     748             :  *
     749             :  * This function is the same as the CPP method
     750             :  * OGRGeometryFactory::destroyGeometry.
     751             :  *
     752             :  * @param hGeom handle to the geometry to delete.
     753             :  */
     754             : 
     755      290121 : void OGR_G_DestroyGeometry(OGRGeometryH hGeom)
     756             : 
     757             : {
     758      290121 :     delete OGRGeometry::FromHandle(hGeom);
     759      290121 : }
     760             : 
     761             : /************************************************************************/
     762             : /*                           forceToPolygon()                           */
     763             : /************************************************************************/
     764             : 
     765             : /**
     766             :  * \brief Convert to polygon.
     767             :  *
     768             :  * Tries to force the provided geometry to be a polygon. This effects a change
     769             :  * on multipolygons.
     770             :  * Starting with GDAL 2.0, curve polygons or closed curves will be changed to
     771             :  * polygons.  The passed in geometry is consumed and a new one returned (or
     772             :  * potentially the same one).
     773             :  *
     774             :  * Note: the resulting polygon may break the Simple Features rules for polygons,
     775             :  * for example when converting from a multi-part multipolygon.
     776             :  *
     777             :  * @param poGeom the input geometry - ownership is passed to the method.
     778             :  * @return new geometry.
     779             :  */
     780             : 
     781         148 : OGRGeometry *OGRGeometryFactory::forceToPolygon(OGRGeometry *poGeom)
     782             : 
     783             : {
     784         148 :     if (poGeom == nullptr)
     785           0 :         return nullptr;
     786             : 
     787         148 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
     788             : 
     789         148 :     if (eGeomType == wkbCurvePolygon)
     790             :     {
     791          34 :         OGRCurvePolygon *poCurve = poGeom->toCurvePolygon();
     792             : 
     793          34 :         if (!poGeom->hasCurveGeometry(TRUE))
     794          14 :             return OGRSurface::CastToPolygon(poCurve);
     795             : 
     796          20 :         OGRPolygon *poPoly = poCurve->CurvePolyToPoly();
     797          20 :         delete poGeom;
     798          20 :         return poPoly;
     799             :     }
     800             : 
     801             :     // base polygon or triangle
     802         114 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolygon))
     803             :     {
     804           7 :         return OGRSurface::CastToPolygon(poGeom->toSurface());
     805             :     }
     806             : 
     807         107 :     if (OGR_GT_IsCurve(eGeomType))
     808             :     {
     809          60 :         OGRCurve *poCurve = poGeom->toCurve();
     810          60 :         if (poCurve->getNumPoints() >= 3 && poCurve->get_IsClosed())
     811             :         {
     812          40 :             OGRPolygon *poPolygon = new OGRPolygon();
     813          40 :             poPolygon->assignSpatialReference(poGeom->getSpatialReference());
     814             : 
     815          40 :             if (!poGeom->hasCurveGeometry(TRUE))
     816             :             {
     817          26 :                 poPolygon->addRingDirectly(OGRCurve::CastToLinearRing(poCurve));
     818             :             }
     819             :             else
     820             :             {
     821          14 :                 OGRLineString *poLS = poCurve->CurveToLine();
     822          14 :                 poPolygon->addRingDirectly(OGRCurve::CastToLinearRing(poLS));
     823          14 :                 delete poGeom;
     824             :             }
     825          40 :             return poPolygon;
     826             :         }
     827             :     }
     828             : 
     829          67 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
     830             :     {
     831           6 :         OGRPolyhedralSurface *poPS = poGeom->toPolyhedralSurface();
     832           6 :         if (poPS->getNumGeometries() == 1)
     833             :         {
     834           5 :             poGeom = OGRSurface::CastToPolygon(
     835           5 :                 poPS->getGeometryRef(0)->clone()->toSurface());
     836           5 :             delete poPS;
     837           5 :             return poGeom;
     838             :         }
     839             :     }
     840             : 
     841          62 :     if (eGeomType != wkbGeometryCollection && eGeomType != wkbMultiPolygon &&
     842             :         eGeomType != wkbMultiSurface)
     843          38 :         return poGeom;
     844             : 
     845             :     // Build an aggregated polygon from all the polygon rings in the container.
     846          24 :     OGRPolygon *poPolygon = new OGRPolygon();
     847          24 :     OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
     848          24 :     if (poGeom->hasCurveGeometry())
     849             :     {
     850             :         OGRGeometryCollection *poNewGC =
     851           5 :             poGC->getLinearGeometry()->toGeometryCollection();
     852           5 :         delete poGC;
     853           5 :         poGeom = poNewGC;
     854           5 :         poGC = poNewGC;
     855             :     }
     856             : 
     857          24 :     poPolygon->assignSpatialReference(poGeom->getSpatialReference());
     858             : 
     859          53 :     for (int iGeom = 0; iGeom < poGC->getNumGeometries(); iGeom++)
     860             :     {
     861          29 :         if (wkbFlatten(poGC->getGeometryRef(iGeom)->getGeometryType()) !=
     862             :             wkbPolygon)
     863          12 :             continue;
     864             : 
     865          17 :         OGRPolygon *poOldPoly = poGC->getGeometryRef(iGeom)->toPolygon();
     866             : 
     867          17 :         if (poOldPoly->getExteriorRing() == nullptr)
     868           3 :             continue;
     869             : 
     870          14 :         poPolygon->addRingDirectly(poOldPoly->stealExteriorRing());
     871             : 
     872          22 :         for (int iRing = 0; iRing < poOldPoly->getNumInteriorRings(); iRing++)
     873           8 :             poPolygon->addRingDirectly(poOldPoly->stealInteriorRing(iRing));
     874             :     }
     875             : 
     876          24 :     delete poGC;
     877             : 
     878          24 :     return poPolygon;
     879             : }
     880             : 
     881             : /************************************************************************/
     882             : /*                        OGR_G_ForceToPolygon()                        */
     883             : /************************************************************************/
     884             : 
     885             : /**
     886             :  * \brief Convert to polygon.
     887             :  *
     888             :  * This function is the same as the C++ method
     889             :  * OGRGeometryFactory::forceToPolygon().
     890             :  *
     891             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
     892             :  * @return the converted geometry (ownership to caller).
     893             :  *
     894             :  * @since GDAL/OGR 1.8.0
     895             :  */
     896             : 
     897          46 : OGRGeometryH OGR_G_ForceToPolygon(OGRGeometryH hGeom)
     898             : 
     899             : {
     900          46 :     return OGRGeometry::ToHandle(
     901          46 :         OGRGeometryFactory::forceToPolygon(OGRGeometry::FromHandle(hGeom)));
     902             : }
     903             : 
     904             : /************************************************************************/
     905             : /*                        forceToMultiPolygon()                         */
     906             : /************************************************************************/
     907             : 
     908             : /**
     909             :  * \brief Convert to multipolygon.
     910             :  *
     911             :  * Tries to force the provided geometry to be a multipolygon.  Currently
     912             :  * this just effects a change on polygons.  The passed in geometry is
     913             :  * consumed and a new one returned (or potentially the same one).
     914             :  *
     915             :  * @return new geometry.
     916             :  */
     917             : 
     918        3728 : OGRGeometry *OGRGeometryFactory::forceToMultiPolygon(OGRGeometry *poGeom)
     919             : 
     920             : {
     921        3728 :     if (poGeom == nullptr)
     922           0 :         return nullptr;
     923             : 
     924        3728 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
     925             : 
     926             :     /* -------------------------------------------------------------------- */
     927             :     /*      If this is already a MultiPolygon, nothing to do                */
     928             :     /* -------------------------------------------------------------------- */
     929        3728 :     if (eGeomType == wkbMultiPolygon)
     930             :     {
     931          40 :         return poGeom;
     932             :     }
     933             : 
     934             :     /* -------------------------------------------------------------------- */
     935             :     /*      If this is already a MultiSurface with compatible content,      */
     936             :     /*      just cast                                                       */
     937             :     /* -------------------------------------------------------------------- */
     938        3688 :     if (eGeomType == wkbMultiSurface)
     939             :     {
     940           9 :         OGRMultiSurface *poMS = poGeom->toMultiSurface();
     941           9 :         if (!poMS->hasCurveGeometry(TRUE))
     942             :         {
     943           4 :             return OGRMultiSurface::CastToMultiPolygon(poMS);
     944             :         }
     945             :     }
     946             : 
     947             :     /* -------------------------------------------------------------------- */
     948             :     /*      Check for the case of a geometrycollection that can be          */
     949             :     /*      promoted to MultiPolygon.                                       */
     950             :     /* -------------------------------------------------------------------- */
     951        3684 :     if (eGeomType == wkbGeometryCollection || eGeomType == wkbMultiSurface)
     952             :     {
     953          73 :         bool bAllPoly = true;
     954          73 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
     955          73 :         if (poGeom->hasCurveGeometry())
     956             :         {
     957             :             OGRGeometryCollection *poNewGC =
     958           6 :                 poGC->getLinearGeometry()->toGeometryCollection();
     959           6 :             delete poGC;
     960           6 :             poGeom = poNewGC;
     961           6 :             poGC = poNewGC;
     962             :         }
     963             : 
     964          73 :         bool bCanConvertToMultiPoly = true;
     965         294 :         for (int iGeom = 0; iGeom < poGC->getNumGeometries(); iGeom++)
     966             :         {
     967             :             OGRwkbGeometryType eSubGeomType =
     968         221 :                 wkbFlatten(poGC->getGeometryRef(iGeom)->getGeometryType());
     969         221 :             if (eSubGeomType != wkbPolygon)
     970         172 :                 bAllPoly = false;
     971         221 :             if (eSubGeomType != wkbMultiPolygon && eSubGeomType != wkbPolygon &&
     972         134 :                 eSubGeomType != wkbPolyhedralSurface && eSubGeomType != wkbTIN)
     973             :             {
     974          16 :                 bCanConvertToMultiPoly = false;
     975             :             }
     976             :         }
     977             : 
     978          73 :         if (!bCanConvertToMultiPoly)
     979          12 :             return poGeom;
     980             : 
     981          61 :         OGRMultiPolygon *poMP = new OGRMultiPolygon();
     982          61 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
     983             : 
     984         264 :         while (poGC->getNumGeometries() > 0)
     985             :         {
     986         203 :             OGRGeometry *poSubGeom = poGC->getGeometryRef(0);
     987         203 :             poGC->removeGeometry(0, FALSE);
     988         203 :             if (bAllPoly)
     989             :             {
     990          47 :                 poMP->addGeometryDirectly(poSubGeom);
     991             :             }
     992             :             else
     993             :             {
     994         156 :                 poSubGeom = forceToMultiPolygon(poSubGeom);
     995         156 :                 OGRMultiPolygon *poSubMP = poSubGeom->toMultiPolygon();
     996         414 :                 while (poSubMP != nullptr && poSubMP->getNumGeometries() > 0)
     997             :                 {
     998         258 :                     poMP->addGeometryDirectly(poSubMP->getGeometryRef(0));
     999         258 :                     poSubMP->removeGeometry(0, FALSE);
    1000             :                 }
    1001         156 :                 delete poSubMP;
    1002             :             }
    1003             :         }
    1004             : 
    1005          61 :         delete poGC;
    1006             : 
    1007          61 :         return poMP;
    1008             :     }
    1009             : 
    1010        3611 :     if (eGeomType == wkbCurvePolygon)
    1011             :     {
    1012           5 :         OGRPolygon *poPoly = poGeom->toCurvePolygon()->CurvePolyToPoly();
    1013           5 :         OGRMultiPolygon *poMP = new OGRMultiPolygon();
    1014           5 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1015           5 :         poMP->addGeometryDirectly(poPoly);
    1016           5 :         delete poGeom;
    1017           5 :         return poMP;
    1018             :     }
    1019             : 
    1020             :     /* -------------------------------------------------------------------- */
    1021             :     /*      If it is PolyhedralSurface or TIN, then pretend it is a         */
    1022             :     /*      multipolygon.                                                   */
    1023             :     /* -------------------------------------------------------------------- */
    1024        3606 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
    1025             :     {
    1026         992 :         return OGRPolyhedralSurface::CastToMultiPolygon(
    1027         992 :             poGeom->toPolyhedralSurface());
    1028             :     }
    1029             : 
    1030        2614 :     if (eGeomType == wkbTriangle)
    1031             :     {
    1032           2 :         return forceToMultiPolygon(forceToPolygon(poGeom));
    1033             :     }
    1034             : 
    1035             :     /* -------------------------------------------------------------------- */
    1036             :     /*      Eventually we should try to split the polygon into component    */
    1037             :     /*      island polygons.  But that is a lot of work and can be put off. */
    1038             :     /* -------------------------------------------------------------------- */
    1039        2612 :     if (eGeomType != wkbPolygon)
    1040          30 :         return poGeom;
    1041             : 
    1042        2582 :     OGRMultiPolygon *poMP = new OGRMultiPolygon();
    1043        2582 :     poMP->assignSpatialReference(poGeom->getSpatialReference());
    1044        2582 :     poMP->addGeometryDirectly(poGeom);
    1045             : 
    1046        2582 :     return poMP;
    1047             : }
    1048             : 
    1049             : /************************************************************************/
    1050             : /*                     OGR_G_ForceToMultiPolygon()                      */
    1051             : /************************************************************************/
    1052             : 
    1053             : /**
    1054             :  * \brief Convert to multipolygon.
    1055             :  *
    1056             :  * This function is the same as the C++ method
    1057             :  * OGRGeometryFactory::forceToMultiPolygon().
    1058             :  *
    1059             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1060             :  * @return the converted geometry (ownership to caller).
    1061             :  *
    1062             :  * @since GDAL/OGR 1.8.0
    1063             :  */
    1064             : 
    1065          47 : OGRGeometryH OGR_G_ForceToMultiPolygon(OGRGeometryH hGeom)
    1066             : 
    1067             : {
    1068          47 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceToMultiPolygon(
    1069          47 :         OGRGeometry::FromHandle(hGeom)));
    1070             : }
    1071             : 
    1072             : /************************************************************************/
    1073             : /*                        forceToMultiPoint()                           */
    1074             : /************************************************************************/
    1075             : 
    1076             : /**
    1077             :  * \brief Convert to multipoint.
    1078             :  *
    1079             :  * Tries to force the provided geometry to be a multipoint.  Currently
    1080             :  * this just effects a change on points or collection of points.
    1081             :  * The passed in geometry is
    1082             :  * consumed and a new one returned (or potentially the same one).
    1083             :  *
    1084             :  * @return new geometry.
    1085             :  */
    1086             : 
    1087          67 : OGRGeometry *OGRGeometryFactory::forceToMultiPoint(OGRGeometry *poGeom)
    1088             : 
    1089             : {
    1090          67 :     if (poGeom == nullptr)
    1091           0 :         return nullptr;
    1092             : 
    1093          67 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    1094             : 
    1095             :     /* -------------------------------------------------------------------- */
    1096             :     /*      If this is already a MultiPoint, nothing to do                  */
    1097             :     /* -------------------------------------------------------------------- */
    1098          67 :     if (eGeomType == wkbMultiPoint)
    1099             :     {
    1100           2 :         return poGeom;
    1101             :     }
    1102             : 
    1103             :     /* -------------------------------------------------------------------- */
    1104             :     /*      Check for the case of a geometrycollection that can be          */
    1105             :     /*      promoted to MultiPoint.                                         */
    1106             :     /* -------------------------------------------------------------------- */
    1107          65 :     if (eGeomType == wkbGeometryCollection)
    1108             :     {
    1109          14 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1110          18 :         for (const auto &poMember : poGC)
    1111             :         {
    1112          14 :             if (wkbFlatten(poMember->getGeometryType()) != wkbPoint)
    1113          10 :                 return poGeom;
    1114             :         }
    1115             : 
    1116           4 :         OGRMultiPoint *poMP = new OGRMultiPoint();
    1117           4 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1118             : 
    1119           8 :         while (poGC->getNumGeometries() > 0)
    1120             :         {
    1121           4 :             poMP->addGeometryDirectly(poGC->getGeometryRef(0));
    1122           4 :             poGC->removeGeometry(0, FALSE);
    1123             :         }
    1124             : 
    1125           4 :         delete poGC;
    1126             : 
    1127           4 :         return poMP;
    1128             :     }
    1129             : 
    1130          51 :     if (eGeomType != wkbPoint)
    1131          44 :         return poGeom;
    1132             : 
    1133           7 :     OGRMultiPoint *poMP = new OGRMultiPoint();
    1134           7 :     poMP->assignSpatialReference(poGeom->getSpatialReference());
    1135           7 :     poMP->addGeometryDirectly(poGeom);
    1136             : 
    1137           7 :     return poMP;
    1138             : }
    1139             : 
    1140             : /************************************************************************/
    1141             : /*                      OGR_G_ForceToMultiPoint()                       */
    1142             : /************************************************************************/
    1143             : 
    1144             : /**
    1145             :  * \brief Convert to multipoint.
    1146             :  *
    1147             :  * This function is the same as the C++ method
    1148             :  * OGRGeometryFactory::forceToMultiPoint().
    1149             :  *
    1150             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1151             :  * @return the converted geometry (ownership to caller).
    1152             :  *
    1153             :  * @since GDAL/OGR 1.8.0
    1154             :  */
    1155             : 
    1156          41 : OGRGeometryH OGR_G_ForceToMultiPoint(OGRGeometryH hGeom)
    1157             : 
    1158             : {
    1159          41 :     return OGRGeometry::ToHandle(
    1160          41 :         OGRGeometryFactory::forceToMultiPoint(OGRGeometry::FromHandle(hGeom)));
    1161             : }
    1162             : 
    1163             : /************************************************************************/
    1164             : /*                        forceToMultiLinestring()                      */
    1165             : /************************************************************************/
    1166             : 
    1167             : /**
    1168             :  * \brief Convert to multilinestring.
    1169             :  *
    1170             :  * Tries to force the provided geometry to be a multilinestring.
    1171             :  *
    1172             :  * - linestrings are placed in a multilinestring.
    1173             :  * - circularstrings and compoundcurves will be approximated and placed in a
    1174             :  * multilinestring.
    1175             :  * - geometry collections will be converted to multilinestring if they only
    1176             :  * contain linestrings.
    1177             :  * - polygons will be changed to a collection of linestrings (one per ring).
    1178             :  * - curvepolygons will be approximated and changed to a collection of
    1179             :  ( linestrings (one per ring).
    1180             :  *
    1181             :  * The passed in geometry is
    1182             :  * consumed and a new one returned (or potentially the same one).
    1183             :  *
    1184             :  * @return new geometry.
    1185             :  */
    1186             : 
    1187        2134 : OGRGeometry *OGRGeometryFactory::forceToMultiLineString(OGRGeometry *poGeom)
    1188             : 
    1189             : {
    1190        2134 :     if (poGeom == nullptr)
    1191           0 :         return nullptr;
    1192             : 
    1193        2134 :     OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    1194             : 
    1195             :     /* -------------------------------------------------------------------- */
    1196             :     /*      If this is already a MultiLineString, nothing to do             */
    1197             :     /* -------------------------------------------------------------------- */
    1198        2134 :     if (eGeomType == wkbMultiLineString)
    1199             :     {
    1200           2 :         return poGeom;
    1201             :     }
    1202             : 
    1203             :     /* -------------------------------------------------------------------- */
    1204             :     /*      Check for the case of a geometrycollection that can be          */
    1205             :     /*      promoted to MultiLineString.                                    */
    1206             :     /* -------------------------------------------------------------------- */
    1207        2132 :     if (eGeomType == wkbGeometryCollection)
    1208             :     {
    1209          16 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1210          16 :         if (poGeom->hasCurveGeometry())
    1211             :         {
    1212             :             OGRGeometryCollection *poNewGC =
    1213           1 :                 poGC->getLinearGeometry()->toGeometryCollection();
    1214           1 :             delete poGC;
    1215           1 :             poGeom = poNewGC;
    1216           1 :             poGC = poNewGC;
    1217             :         }
    1218             : 
    1219          24 :         for (auto &&poMember : poGC)
    1220             :         {
    1221          18 :             if (wkbFlatten(poMember->getGeometryType()) != wkbLineString)
    1222             :             {
    1223          10 :                 return poGeom;
    1224             :             }
    1225             :         }
    1226             : 
    1227           6 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1228           6 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1229             : 
    1230          14 :         while (poGC->getNumGeometries() > 0)
    1231             :         {
    1232           8 :             poMP->addGeometryDirectly(poGC->getGeometryRef(0));
    1233           8 :             poGC->removeGeometry(0, FALSE);
    1234             :         }
    1235             : 
    1236           6 :         delete poGC;
    1237             : 
    1238           6 :         return poMP;
    1239             :     }
    1240             : 
    1241             :     /* -------------------------------------------------------------------- */
    1242             :     /*      Turn a linestring into a multilinestring.                       */
    1243             :     /* -------------------------------------------------------------------- */
    1244        2116 :     if (eGeomType == wkbLineString)
    1245             :     {
    1246        2030 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1247        2030 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1248        2030 :         poMP->addGeometryDirectly(poGeom);
    1249        2030 :         return poMP;
    1250             :     }
    1251             : 
    1252             :     /* -------------------------------------------------------------------- */
    1253             :     /*      Convert polygons into a multilinestring.                        */
    1254             :     /* -------------------------------------------------------------------- */
    1255          86 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbCurvePolygon))
    1256             :     {
    1257          28 :         OGRMultiLineString *poMLS = new OGRMultiLineString();
    1258          28 :         poMLS->assignSpatialReference(poGeom->getSpatialReference());
    1259             : 
    1260          57 :         const auto AddRingFromSrcPoly = [poMLS](const OGRPolygon *poPoly)
    1261             :         {
    1262          61 :             for (int iRing = 0; iRing < poPoly->getNumInteriorRings() + 1;
    1263             :                  iRing++)
    1264             :             {
    1265             :                 const OGRLineString *poLR;
    1266             : 
    1267          35 :                 if (iRing == 0)
    1268             :                 {
    1269          28 :                     poLR = poPoly->getExteriorRing();
    1270          28 :                     if (poLR == nullptr)
    1271           2 :                         break;
    1272             :                 }
    1273             :                 else
    1274           7 :                     poLR = poPoly->getInteriorRing(iRing - 1);
    1275             : 
    1276          33 :                 if (poLR == nullptr || poLR->getNumPoints() == 0)
    1277           4 :                     continue;
    1278             : 
    1279          29 :                 auto poNewLS = new OGRLineString();
    1280          29 :                 poNewLS->addSubLineString(poLR);
    1281          29 :                 poMLS->addGeometryDirectly(poNewLS);
    1282             :             }
    1283          28 :         };
    1284             : 
    1285          28 :         if (OGR_GT_IsSubClassOf(eGeomType, wkbPolygon))
    1286             :         {
    1287          24 :             AddRingFromSrcPoly(poGeom->toPolygon());
    1288             :         }
    1289             :         else
    1290             :         {
    1291             :             auto poTmpPoly = std::unique_ptr<OGRPolygon>(
    1292           8 :                 poGeom->toCurvePolygon()->CurvePolyToPoly());
    1293           4 :             AddRingFromSrcPoly(poTmpPoly.get());
    1294             :         }
    1295             : 
    1296          28 :         delete poGeom;
    1297             : 
    1298          28 :         return poMLS;
    1299             :     }
    1300             : 
    1301             :     /* -------------------------------------------------------------------- */
    1302             :     /*      If it is PolyhedralSurface or TIN, then pretend it is a         */
    1303             :     /*      multipolygon.                                                   */
    1304             :     /* -------------------------------------------------------------------- */
    1305          58 :     if (OGR_GT_IsSubClassOf(eGeomType, wkbPolyhedralSurface))
    1306             :     {
    1307           0 :         poGeom = CPLAssertNotNull(forceToMultiPolygon(poGeom));
    1308           0 :         eGeomType = wkbMultiPolygon;
    1309             :     }
    1310             : 
    1311             :     /* -------------------------------------------------------------------- */
    1312             :     /*      Convert multi-polygons into a multilinestring.                  */
    1313             :     /* -------------------------------------------------------------------- */
    1314          58 :     if (eGeomType == wkbMultiPolygon || eGeomType == wkbMultiSurface)
    1315             :     {
    1316           9 :         OGRMultiLineString *poMLS = new OGRMultiLineString();
    1317           9 :         poMLS->assignSpatialReference(poGeom->getSpatialReference());
    1318             : 
    1319          22 :         const auto AddRingFromSrcMP = [poMLS](const OGRMultiPolygon *poSrcMP)
    1320             :         {
    1321          21 :             for (auto &&poPoly : poSrcMP)
    1322             :             {
    1323          27 :                 for (auto &&poLR : poPoly)
    1324             :                 {
    1325          15 :                     if (poLR->IsEmpty())
    1326           2 :                         continue;
    1327             : 
    1328          13 :                     OGRLineString *poNewLS = new OGRLineString();
    1329          13 :                     poNewLS->addSubLineString(poLR);
    1330          13 :                     poMLS->addGeometryDirectly(poNewLS);
    1331             :                 }
    1332             :             }
    1333           9 :         };
    1334             : 
    1335           9 :         if (eGeomType == wkbMultiPolygon)
    1336             :         {
    1337           6 :             AddRingFromSrcMP(poGeom->toMultiPolygon());
    1338             :         }
    1339             :         else
    1340             :         {
    1341             :             auto poTmpMPoly = std::unique_ptr<OGRMultiPolygon>(
    1342           6 :                 poGeom->getLinearGeometry()->toMultiPolygon());
    1343           3 :             AddRingFromSrcMP(poTmpMPoly.get());
    1344             :         }
    1345             : 
    1346           9 :         delete poGeom;
    1347           9 :         return poMLS;
    1348             :     }
    1349             : 
    1350             :     /* -------------------------------------------------------------------- */
    1351             :     /*      If it is a curve line, approximate it and wrap in a multilinestring
    1352             :      */
    1353             :     /* -------------------------------------------------------------------- */
    1354          49 :     if (eGeomType == wkbCircularString || eGeomType == wkbCompoundCurve)
    1355             :     {
    1356          20 :         OGRMultiLineString *poMP = new OGRMultiLineString();
    1357          20 :         poMP->assignSpatialReference(poGeom->getSpatialReference());
    1358          20 :         poMP->addGeometryDirectly(poGeom->toCurve()->CurveToLine());
    1359          20 :         delete poGeom;
    1360          20 :         return poMP;
    1361             :     }
    1362             : 
    1363             :     /* -------------------------------------------------------------------- */
    1364             :     /*      If this is already a MultiCurve with compatible content,        */
    1365             :     /*      just cast                                                       */
    1366             :     /* -------------------------------------------------------------------- */
    1367          38 :     if (eGeomType == wkbMultiCurve &&
    1368           9 :         !poGeom->toMultiCurve()->hasCurveGeometry(TRUE))
    1369             :     {
    1370           3 :         return OGRMultiCurve::CastToMultiLineString(poGeom->toMultiCurve());
    1371             :     }
    1372             : 
    1373             :     /* -------------------------------------------------------------------- */
    1374             :     /*      If it is a multicurve, call getLinearGeometry()                */
    1375             :     /* -------------------------------------------------------------------- */
    1376          26 :     if (eGeomType == wkbMultiCurve)
    1377             :     {
    1378           6 :         OGRGeometry *poNewGeom = poGeom->getLinearGeometry();
    1379           6 :         CPLAssert(wkbFlatten(poNewGeom->getGeometryType()) ==
    1380             :                   wkbMultiLineString);
    1381           6 :         delete poGeom;
    1382           6 :         return poNewGeom->toMultiLineString();
    1383             :     }
    1384             : 
    1385          20 :     return poGeom;
    1386             : }
    1387             : 
    1388             : /************************************************************************/
    1389             : /*                    OGR_G_ForceToMultiLineString()                    */
    1390             : /************************************************************************/
    1391             : 
    1392             : /**
    1393             :  * \brief Convert to multilinestring.
    1394             :  *
    1395             :  * This function is the same as the C++ method
    1396             :  * OGRGeometryFactory::forceToMultiLineString().
    1397             :  *
    1398             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    1399             :  * @return the converted geometry (ownership to caller).
    1400             :  *
    1401             :  * @since GDAL/OGR 1.8.0
    1402             :  */
    1403             : 
    1404          50 : OGRGeometryH OGR_G_ForceToMultiLineString(OGRGeometryH hGeom)
    1405             : 
    1406             : {
    1407          50 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceToMultiLineString(
    1408          50 :         OGRGeometry::FromHandle(hGeom)));
    1409             : }
    1410             : 
    1411             : /************************************************************************/
    1412             : /*                      removeLowerDimensionSubGeoms()                  */
    1413             : /************************************************************************/
    1414             : 
    1415             : /** \brief Remove sub-geometries from a geometry collection that do not have
    1416             :  *         the maximum topological dimensionality of the collection.
    1417             :  *
    1418             :  * This is typically to be used as a cleanup phase after running
    1419             :  * OGRGeometry::MakeValid()
    1420             :  *
    1421             :  * For example, MakeValid() on a polygon can return a geometry collection of
    1422             :  * polygons and linestrings. Calling this method will return either a polygon
    1423             :  * or multipolygon by dropping those linestrings.
    1424             :  *
    1425             :  * On a non-geometry collection, this will return a clone of the passed
    1426             :  * geometry.
    1427             :  *
    1428             :  * @param poGeom input geometry
    1429             :  * @return a new geometry.
    1430             :  *
    1431             :  * @since GDAL 3.1.0
    1432             :  */
    1433             : OGRGeometry *
    1434          32 : OGRGeometryFactory::removeLowerDimensionSubGeoms(const OGRGeometry *poGeom)
    1435             : {
    1436          32 :     if (poGeom == nullptr)
    1437           0 :         return nullptr;
    1438          47 :     if (wkbFlatten(poGeom->getGeometryType()) != wkbGeometryCollection ||
    1439          15 :         poGeom->IsEmpty())
    1440             :     {
    1441          18 :         return poGeom->clone();
    1442             :     }
    1443          14 :     const OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    1444          14 :     int nMaxDim = 0;
    1445          14 :     OGRBoolean bHasCurve = FALSE;
    1446          39 :     for (const auto poSubGeom : *poGC)
    1447             :     {
    1448          25 :         nMaxDim = std::max(nMaxDim, poSubGeom->getDimension());
    1449          25 :         bHasCurve |= poSubGeom->hasCurveGeometry();
    1450             :     }
    1451          14 :     int nCountAtMaxDim = 0;
    1452          14 :     const OGRGeometry *poGeomAtMaxDim = nullptr;
    1453          39 :     for (const auto poSubGeom : *poGC)
    1454             :     {
    1455          25 :         if (poSubGeom->getDimension() == nMaxDim)
    1456             :         {
    1457          19 :             poGeomAtMaxDim = poSubGeom;
    1458          19 :             nCountAtMaxDim++;
    1459             :         }
    1460             :     }
    1461          14 :     if (nCountAtMaxDim == 1 && poGeomAtMaxDim != nullptr)
    1462             :     {
    1463           9 :         return poGeomAtMaxDim->clone();
    1464             :     }
    1465             :     OGRGeometryCollection *poRet =
    1466           5 :         (nMaxDim == 0)
    1467          10 :             ? static_cast<OGRGeometryCollection *>(new OGRMultiPoint())
    1468           5 :         : (nMaxDim == 1)
    1469          10 :             ? (!bHasCurve
    1470           4 :                    ? static_cast<OGRGeometryCollection *>(
    1471           1 :                          new OGRMultiLineString())
    1472           1 :                    : static_cast<OGRGeometryCollection *>(new OGRMultiCurve()))
    1473           3 :         : (nMaxDim == 2 && !bHasCurve)
    1474           6 :             ? static_cast<OGRGeometryCollection *>(new OGRMultiPolygon())
    1475           1 :             : static_cast<OGRGeometryCollection *>(new OGRMultiSurface());
    1476          15 :     for (const auto poSubGeom : *poGC)
    1477             :     {
    1478          10 :         if (poSubGeom->getDimension() == nMaxDim)
    1479             :         {
    1480          10 :             if (OGR_GT_IsSubClassOf(poSubGeom->getGeometryType(),
    1481          10 :                                     wkbGeometryCollection))
    1482             :             {
    1483             :                 const OGRGeometryCollection *poSubGeomAsGC =
    1484           1 :                     poSubGeom->toGeometryCollection();
    1485           2 :                 for (const auto poSubSubGeom : *poSubGeomAsGC)
    1486             :                 {
    1487           1 :                     if (poSubSubGeom->getDimension() == nMaxDim)
    1488             :                     {
    1489           1 :                         poRet->addGeometryDirectly(poSubSubGeom->clone());
    1490             :                     }
    1491             :                 }
    1492             :             }
    1493             :             else
    1494             :             {
    1495           9 :                 poRet->addGeometryDirectly(poSubGeom->clone());
    1496             :             }
    1497             :         }
    1498             :     }
    1499           5 :     return poRet;
    1500             : }
    1501             : 
    1502             : /************************************************************************/
    1503             : /*                  OGR_G_RemoveLowerDimensionSubGeoms()                */
    1504             : /************************************************************************/
    1505             : 
    1506             : /** \brief Remove sub-geometries from a geometry collection that do not have
    1507             :  *         the maximum topological dimensionality of the collection.
    1508             :  *
    1509             :  * This function is the same as the C++ method
    1510             :  * OGRGeometryFactory::removeLowerDimensionSubGeoms().
    1511             :  *
    1512             :  * @param hGeom handle to the geometry to convert
    1513             :  * @return a new geometry.
    1514             :  *
    1515             :  * @since GDAL 3.1.0
    1516             :  */
    1517             : 
    1518          18 : OGRGeometryH OGR_G_RemoveLowerDimensionSubGeoms(const OGRGeometryH hGeom)
    1519             : 
    1520             : {
    1521          18 :     return OGRGeometry::ToHandle(
    1522             :         OGRGeometryFactory::removeLowerDimensionSubGeoms(
    1523          36 :             OGRGeometry::FromHandle(hGeom)));
    1524             : }
    1525             : 
    1526             : /************************************************************************/
    1527             : /*                          organizePolygons()                          */
    1528             : /************************************************************************/
    1529             : 
    1530       85332 : struct sPolyExtended
    1531             : {
    1532             :     CPL_DISALLOW_COPY_ASSIGN(sPolyExtended)
    1533       60266 :     sPolyExtended() = default;
    1534      112052 :     sPolyExtended(sPolyExtended &&) = default;
    1535             :     sPolyExtended &operator=(sPolyExtended &&) = default;
    1536             : 
    1537             :     OGRGeometry *poGeometry = nullptr;
    1538             :     OGRCurvePolygon *poPolygon = nullptr;
    1539             :     OGREnvelope sEnvelope{};
    1540             :     OGRCurve *poExteriorRing = nullptr;
    1541             :     OGRPoint poAPoint{};
    1542             :     int nInitialIndex = 0;
    1543             :     OGRCurvePolygon *poEnclosingPolygon = nullptr;
    1544             :     double dfArea = 0.0;
    1545             :     bool bIsTopLevel = false;
    1546             :     bool bIsCW = false;
    1547             :     bool bIsPolygon = false;
    1548             : };
    1549             : 
    1550        4973 : static bool OGRGeometryFactoryCompareArea(const sPolyExtended &sPoly1,
    1551             :                                           const sPolyExtended &sPoly2)
    1552             : {
    1553        4973 :     return sPoly2.dfArea < sPoly1.dfArea;
    1554             : }
    1555             : 
    1556      518784 : static bool OGRGeometryFactoryCompareByIndex(const sPolyExtended &sPoly1,
    1557             :                                              const sPolyExtended &sPoly2)
    1558             : {
    1559      518784 :     return sPoly1.nInitialIndex < sPoly2.nInitialIndex;
    1560             : }
    1561             : 
    1562             : constexpr int N_CRITICAL_PART_NUMBER = 100;
    1563             : 
    1564             : enum OrganizePolygonMethod
    1565             : {
    1566             :     METHOD_NORMAL,
    1567             :     METHOD_SKIP,
    1568             :     METHOD_ONLY_CCW,
    1569             :     METHOD_CCW_INNER_JUST_AFTER_CW_OUTER
    1570             : };
    1571             : 
    1572             : /**
    1573             :  * \brief Organize polygons based on geometries.
    1574             :  *
    1575             :  * Analyse a set of rings (passed as simple polygons), and based on a
    1576             :  * geometric analysis convert them into a polygon with inner rings,
    1577             :  * (or a MultiPolygon if dealing with more than one polygon) that follow the
    1578             :  * OGC Simple Feature specification.
    1579             :  *
    1580             :  * All the input geometries must be OGRPolygon/OGRCurvePolygon with only a valid
    1581             :  * exterior ring (at least 4 points) and no interior rings.
    1582             :  *
    1583             :  * The passed in geometries become the responsibility of the method, but the
    1584             :  * papoPolygons "pointer array" remains owned by the caller.
    1585             :  *
    1586             :  * For faster computation, a polygon is considered to be inside
    1587             :  * another one if a single point of its external ring is included into the other
    1588             :  * one. (unless 'OGR_DEBUG_ORGANIZE_POLYGONS' configuration option is set to
    1589             :  * TRUE. In that case, a slower algorithm that tests exact topological
    1590             :  * relationships is used if GEOS is available.)
    1591             :  *
    1592             :  * In cases where a big number of polygons is passed to this function, the
    1593             :  * default processing may be really slow. You can skip the processing by adding
    1594             :  * METHOD=SKIP to the option list (the result of the function will be a
    1595             :  * multi-polygon with all polygons as toplevel polygons) or only make it analyze
    1596             :  * counterclockwise polygons by adding METHOD=ONLY_CCW to the option list if you
    1597             :  * can assume that the outline of holes is counterclockwise defined (this is the
    1598             :  * convention for example in shapefiles, Personal Geodatabases or File
    1599             :  * Geodatabases).
    1600             :  *
    1601             :  * For FileGDB, in most cases, but not always, a faster method than ONLY_CCW can
    1602             :  * be used. It is CCW_INNER_JUST_AFTER_CW_OUTER. When using it, inner rings are
    1603             :  * assumed to be counterclockwise oriented, and following immediately the outer
    1604             :  * ring (clockwise oriented) that they belong to. If that assumption is not met,
    1605             :  * an inner ring could be attached to the wrong outer ring, so this method must
    1606             :  * be used with care.
    1607             :  *
    1608             :  * If the OGR_ORGANIZE_POLYGONS configuration option is defined, its value will
    1609             :  * override the value of the METHOD option of papszOptions (useful to modify the
    1610             :  * behavior of the shapefile driver)
    1611             :  *
    1612             :  * @param papoPolygons array of geometry pointers - should all be OGRPolygons
    1613             :  * or OGRCurvePolygons. Ownership of the geometries is passed, but not of the
    1614             :  * array itself.
    1615             :  * @param nPolygonCount number of items in papoPolygons
    1616             :  * @param pbIsValidGeometry value may be set to FALSE if an invalid result is
    1617             :  * detected. Validity checks vary according to the method used and are are limited
    1618             :  * to what is needed to link inner rings to outer rings, so a result of TRUE
    1619             :  * does not mean that OGRGeometry::IsValid() returns TRUE.
    1620             :  * @param papszOptions a list of strings for passing options
    1621             :  *
    1622             :  * @return a single resulting geometry (either OGRPolygon, OGRCurvePolygon,
    1623             :  * OGRMultiPolygon, OGRMultiSurface or OGRGeometryCollection). Returns a
    1624             :  * POLYGON EMPTY in the case of nPolygonCount being 0.
    1625             :  */
    1626             : 
    1627       48253 : OGRGeometry *OGRGeometryFactory::organizePolygons(OGRGeometry **papoPolygons,
    1628             :                                                   int nPolygonCount,
    1629             :                                                   int *pbIsValidGeometry,
    1630             :                                                   const char **papszOptions)
    1631             : {
    1632       48253 :     if (nPolygonCount == 0)
    1633             :     {
    1634           4 :         if (pbIsValidGeometry)
    1635           0 :             *pbIsValidGeometry = TRUE;
    1636             : 
    1637           4 :         return new OGRPolygon();
    1638             :     }
    1639             : 
    1640       48249 :     OGRGeometry *geom = nullptr;
    1641       48249 :     OrganizePolygonMethod method = METHOD_NORMAL;
    1642       48249 :     bool bHasCurves = false;
    1643             : 
    1644             :     /* -------------------------------------------------------------------- */
    1645             :     /*      Trivial case of a single polygon.                               */
    1646             :     /* -------------------------------------------------------------------- */
    1647       48249 :     if (nPolygonCount == 1)
    1648             :     {
    1649             :         OGRwkbGeometryType eType =
    1650       33438 :             wkbFlatten(papoPolygons[0]->getGeometryType());
    1651             : 
    1652       33438 :         bool bIsValid = true;
    1653             : 
    1654       33438 :         if (eType != wkbPolygon && eType != wkbCurvePolygon)
    1655             :         {
    1656           3 :             CPLError(CE_Warning, CPLE_AppDefined,
    1657             :                      "organizePolygons() received a non-Polygon geometry.");
    1658           3 :             bIsValid = false;
    1659           3 :             delete papoPolygons[0];
    1660           3 :             geom = new OGRPolygon();
    1661             :         }
    1662             :         else
    1663             :         {
    1664       33435 :             geom = papoPolygons[0];
    1665             :         }
    1666             : 
    1667       33438 :         papoPolygons[0] = nullptr;
    1668             : 
    1669       33438 :         if (pbIsValidGeometry)
    1670       33426 :             *pbIsValidGeometry = bIsValid;
    1671             : 
    1672       33438 :         return geom;
    1673             :     }
    1674             : 
    1675       14811 :     bool bUseFastVersion = true;
    1676       14811 :     if (CPLTestBool(CPLGetConfigOption("OGR_DEBUG_ORGANIZE_POLYGONS", "NO")))
    1677             :     {
    1678             :         /* ------------------------------------------------------------------ */
    1679             :         /*      A wee bit of a warning.                                       */
    1680             :         /* ------------------------------------------------------------------ */
    1681             :         static int firstTime = 1;
    1682             :         // cppcheck-suppress knownConditionTrueFalse
    1683           0 :         if (!haveGEOS() && firstTime)
    1684             :         {
    1685           0 :             CPLDebug(
    1686             :                 "OGR",
    1687             :                 "In OGR_DEBUG_ORGANIZE_POLYGONS mode, GDAL should be built "
    1688             :                 "with GEOS support enabled in order "
    1689             :                 "OGRGeometryFactory::organizePolygons to provide reliable "
    1690             :                 "results on complex polygons.");
    1691           0 :             firstTime = 0;
    1692             :         }
    1693             :         // cppcheck-suppress knownConditionTrueFalse
    1694           0 :         bUseFastVersion = !haveGEOS();
    1695             :     }
    1696             : 
    1697             :     /* -------------------------------------------------------------------- */
    1698             :     /*      Setup per polygon envelope and area information.                */
    1699             :     /* -------------------------------------------------------------------- */
    1700       29622 :     std::vector<sPolyExtended> asPolyEx;
    1701       14811 :     asPolyEx.reserve(nPolygonCount);
    1702             : 
    1703       14811 :     bool bValidTopology = true;
    1704       14811 :     bool bMixedUpGeometries = false;
    1705       14811 :     bool bFoundCCW = false;
    1706             : 
    1707       14811 :     const char *pszMethodValue = CSLFetchNameValue(papszOptions, "METHOD");
    1708             :     const char *pszMethodValueOption =
    1709       14811 :         CPLGetConfigOption("OGR_ORGANIZE_POLYGONS", nullptr);
    1710       14811 :     if (pszMethodValueOption != nullptr && pszMethodValueOption[0] != '\0')
    1711       13944 :         pszMethodValue = pszMethodValueOption;
    1712             : 
    1713       14811 :     if (pszMethodValue != nullptr)
    1714             :     {
    1715       14316 :         if (EQUAL(pszMethodValue, "SKIP"))
    1716             :         {
    1717       13948 :             method = METHOD_SKIP;
    1718       13948 :             bMixedUpGeometries = true;
    1719             :         }
    1720         368 :         else if (EQUAL(pszMethodValue, "ONLY_CCW"))
    1721             :         {
    1722         296 :             method = METHOD_ONLY_CCW;
    1723             :         }
    1724          72 :         else if (EQUAL(pszMethodValue, "CCW_INNER_JUST_AFTER_CW_OUTER"))
    1725             :         {
    1726           0 :             method = METHOD_CCW_INNER_JUST_AFTER_CW_OUTER;
    1727             :         }
    1728          72 :         else if (!EQUAL(pszMethodValue, "DEFAULT"))
    1729             :         {
    1730           0 :             CPLError(CE_Warning, CPLE_AppDefined,
    1731             :                      "Unrecognized value for METHOD option : %s",
    1732             :                      pszMethodValue);
    1733             :         }
    1734             :     }
    1735             : 
    1736       14811 :     int nCountCWPolygon = 0;
    1737       14811 :     int indexOfCWPolygon = -1;
    1738             : 
    1739       75080 :     for (int i = 0; i < nPolygonCount; i++)
    1740             :     {
    1741             :         OGRwkbGeometryType eType =
    1742       60269 :             wkbFlatten(papoPolygons[i]->getGeometryType());
    1743             : 
    1744       60269 :         if (eType != wkbPolygon && eType != wkbCurvePolygon)
    1745             :         {
    1746             :             // Ignore any points or lines that find their way in here.
    1747           3 :             CPLError(CE_Warning, CPLE_AppDefined,
    1748             :                      "organizePolygons() received a non-Polygon geometry.");
    1749           3 :             delete papoPolygons[i];
    1750           3 :             continue;
    1751             :         }
    1752             : 
    1753      120532 :         sPolyExtended sPolyEx;
    1754             : 
    1755       60266 :         sPolyEx.nInitialIndex = i;
    1756       60266 :         sPolyEx.poGeometry = papoPolygons[i];
    1757       60266 :         sPolyEx.poPolygon = papoPolygons[i]->toCurvePolygon();
    1758             : 
    1759       60266 :         papoPolygons[i]->getEnvelope(&sPolyEx.sEnvelope);
    1760             : 
    1761       60266 :         if (eType == wkbCurvePolygon)
    1762          33 :             bHasCurves = true;
    1763       60266 :         if (!sPolyEx.poPolygon->IsEmpty() &&
    1764      120532 :             sPolyEx.poPolygon->getNumInteriorRings() == 0 &&
    1765       60266 :             sPolyEx.poPolygon->getExteriorRingCurve()->getNumPoints() >= 4)
    1766             :         {
    1767       60264 :             if (method != METHOD_CCW_INNER_JUST_AFTER_CW_OUTER)
    1768       60264 :                 sPolyEx.dfArea = sPolyEx.poPolygon->get_Area();
    1769       60264 :             sPolyEx.poExteriorRing = sPolyEx.poPolygon->getExteriorRingCurve();
    1770       60264 :             sPolyEx.poExteriorRing->StartPoint(&sPolyEx.poAPoint);
    1771       60264 :             if (eType == wkbPolygon)
    1772             :             {
    1773       60231 :                 sPolyEx.bIsCW = CPL_TO_BOOL(
    1774       60231 :                     sPolyEx.poExteriorRing->toLinearRing()->isClockwise());
    1775       60231 :                 sPolyEx.bIsPolygon = true;
    1776             :             }
    1777             :             else
    1778             :             {
    1779          33 :                 OGRLineString *poLS = sPolyEx.poExteriorRing->CurveToLine();
    1780          66 :                 OGRLinearRing oLR;
    1781          33 :                 oLR.addSubLineString(poLS);
    1782          33 :                 sPolyEx.bIsCW = CPL_TO_BOOL(oLR.isClockwise());
    1783          33 :                 sPolyEx.bIsPolygon = false;
    1784          33 :                 delete poLS;
    1785             :             }
    1786       60264 :             if (sPolyEx.bIsCW)
    1787             :             {
    1788       17168 :                 indexOfCWPolygon = i;
    1789       17168 :                 nCountCWPolygon++;
    1790             :             }
    1791       60264 :             if (!bFoundCCW)
    1792       29646 :                 bFoundCCW = !(sPolyEx.bIsCW);
    1793             :         }
    1794             :         else
    1795             :         {
    1796           2 :             if (!bMixedUpGeometries)
    1797             :             {
    1798           0 :                 CPLError(CE_Warning, CPLE_AppDefined,
    1799             :                          "organizePolygons() received an unexpected geometry.  "
    1800             :                          "Either a polygon with interior rings, or a polygon "
    1801             :                          "with less than 4 points, or a non-Polygon geometry.  "
    1802             :                          "Return arguments as a collection.");
    1803           0 :                 bMixedUpGeometries = true;
    1804             :             }
    1805             :         }
    1806             : 
    1807       60266 :         asPolyEx.push_back(std::move(sPolyEx));
    1808             :     }
    1809             : 
    1810             :     // If we are in ONLY_CCW mode and that we have found that there is only one
    1811             :     // outer ring, then it is pretty easy : we can assume that all other rings
    1812             :     // are inside.
    1813       14811 :     if ((method == METHOD_ONLY_CCW ||
    1814         296 :          method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER) &&
    1815         115 :         nCountCWPolygon == 1 && bUseFastVersion)
    1816             :     {
    1817         115 :         OGRCurvePolygon *poCP = asPolyEx[indexOfCWPolygon].poPolygon;
    1818         391 :         for (int i = 0; i < static_cast<int>(asPolyEx.size()); i++)
    1819             :         {
    1820         276 :             if (i != indexOfCWPolygon)
    1821             :             {
    1822         161 :                 poCP->addRingDirectly(
    1823         161 :                     asPolyEx[i].poPolygon->stealExteriorRingCurve());
    1824         161 :                 delete asPolyEx[i].poPolygon;
    1825             :             }
    1826             :         }
    1827             : 
    1828         115 :         if (pbIsValidGeometry)
    1829         113 :             *pbIsValidGeometry = TRUE;
    1830         115 :         return poCP;
    1831             :     }
    1832             : 
    1833       14696 :     if (method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER && asPolyEx[0].bIsCW)
    1834             :     {
    1835             :         // Inner rings are CCW oriented and follow immediately the outer
    1836             :         // ring (that is CW oriented) in which they are included.
    1837           0 :         OGRMultiSurface *poMulti = nullptr;
    1838           0 :         OGRCurvePolygon *poCur = asPolyEx[0].poPolygon;
    1839           0 :         OGRGeometry *poRet = poCur;
    1840             :         // We have already checked that the first ring is CW.
    1841           0 :         OGREnvelope *psEnvelope = &(asPolyEx[0].sEnvelope);
    1842           0 :         for (std::size_t i = 1; i < asPolyEx.size(); i++)
    1843             :         {
    1844           0 :             if (asPolyEx[i].bIsCW)
    1845             :             {
    1846           0 :                 if (poMulti == nullptr)
    1847             :                 {
    1848           0 :                     if (bHasCurves)
    1849           0 :                         poMulti = new OGRMultiSurface();
    1850             :                     else
    1851           0 :                         poMulti = new OGRMultiPolygon();
    1852           0 :                     poRet = poMulti;
    1853           0 :                     poMulti->addGeometryDirectly(poCur);
    1854             :                 }
    1855           0 :                 poCur = asPolyEx[i].poPolygon;
    1856           0 :                 poMulti->addGeometryDirectly(poCur);
    1857           0 :                 psEnvelope = &(asPolyEx[i].sEnvelope);
    1858             :             }
    1859             :             else
    1860             :             {
    1861           0 :                 poCur->addRingDirectly(
    1862           0 :                     asPolyEx[i].poPolygon->stealExteriorRingCurve());
    1863           0 :                 if (!(asPolyEx[i].poAPoint.getX() >= psEnvelope->MinX &&
    1864           0 :                       asPolyEx[i].poAPoint.getX() <= psEnvelope->MaxX &&
    1865           0 :                       asPolyEx[i].poAPoint.getY() >= psEnvelope->MinY &&
    1866           0 :                       asPolyEx[i].poAPoint.getY() <= psEnvelope->MaxY))
    1867             :                 {
    1868           0 :                     CPLError(CE_Warning, CPLE_AppDefined,
    1869             :                              "Part %d does not respect "
    1870             :                              "CCW_INNER_JUST_AFTER_CW_OUTER rule",
    1871             :                              static_cast<int>(i));
    1872             :                 }
    1873           0 :                 delete asPolyEx[i].poPolygon;
    1874             :             }
    1875             :         }
    1876             : 
    1877           0 :         if (pbIsValidGeometry)
    1878           0 :             *pbIsValidGeometry = TRUE;
    1879           0 :         return poRet;
    1880             :     }
    1881       14696 :     else if (method == METHOD_CCW_INNER_JUST_AFTER_CW_OUTER)
    1882             :     {
    1883           0 :         method = METHOD_ONLY_CCW;
    1884           0 :         for (std::size_t i = 0; i < asPolyEx.size(); i++)
    1885           0 :             asPolyEx[i].dfArea = asPolyEx[i].poPolygon->get_Area();
    1886             :     }
    1887             : 
    1888             :     // Emits a warning if the number of parts is sufficiently big to anticipate
    1889             :     // for very long computation time, and the user didn't specify an explicit
    1890             :     // method.
    1891       14696 :     if (nPolygonCount > N_CRITICAL_PART_NUMBER && method == METHOD_NORMAL &&
    1892             :         pszMethodValue == nullptr)
    1893             :     {
    1894             :         static int firstTime = 1;
    1895           0 :         if (firstTime)
    1896             :         {
    1897           0 :             if (bFoundCCW)
    1898             :             {
    1899           0 :                 CPLError(
    1900             :                     CE_Warning, CPLE_AppDefined,
    1901             :                     "organizePolygons() received a polygon with more than %d "
    1902             :                     "parts. The processing may be really slow.  "
    1903             :                     "You can skip the processing by setting METHOD=SKIP, "
    1904             :                     "or only make it analyze counter-clock wise parts by "
    1905             :                     "setting METHOD=ONLY_CCW if you can assume that the "
    1906             :                     "outline of holes is counter-clock wise defined",
    1907             :                     N_CRITICAL_PART_NUMBER);
    1908             :             }
    1909             :             else
    1910             :             {
    1911           0 :                 CPLError(
    1912             :                     CE_Warning, CPLE_AppDefined,
    1913             :                     "organizePolygons() received a polygon with more than %d "
    1914             :                     "parts.  The processing may be really slow.  "
    1915             :                     "You can skip the processing by setting METHOD=SKIP.",
    1916             :                     N_CRITICAL_PART_NUMBER);
    1917             :             }
    1918           0 :             firstTime = 0;
    1919             :         }
    1920             :     }
    1921             : 
    1922             :     /* This a nulti-step algorithm :
    1923             :        1) Sort polygons by descending areas
    1924             :        2) For each polygon of rank i, find its smallest enclosing polygon
    1925             :           among the polygons of rank [i-1 ... 0]. If there are no such polygon,
    1926             :           this is a top-level polygon. Otherwise, depending on if the enclosing
    1927             :           polygon is top-level or not, we can decide if we are top-level or not
    1928             :        3) Re-sort the polygons to retrieve their initial order (nicer for
    1929             :           some applications)
    1930             :        4) For each non top-level polygon (= inner ring), add it to its
    1931             :           outer ring
    1932             :        5) Add the top-level polygons to the multipolygon
    1933             : 
    1934             :        Complexity : O(nPolygonCount^2)
    1935             :     */
    1936             : 
    1937             :     /* Compute how each polygon relate to the other ones
    1938             :        To save a bit of computation we always begin the computation by a test
    1939             :        on the envelope. We also take into account the areas to avoid some
    1940             :        useless tests.  (A contains B implies envelop(A) contains envelop(B)
    1941             :        and area(A) > area(B)) In practice, we can hope that few full geometry
    1942             :        intersection of inclusion test is done:
    1943             :        * if the polygons are well separated geographically (a set of islands
    1944             :        for example), no full geometry intersection or inclusion test is done.
    1945             :        (the envelopes don't intersect each other)
    1946             : 
    1947             :        * if the polygons are 'lake inside an island inside a lake inside an
    1948             :        area' and that each polygon is much smaller than its enclosing one,
    1949             :        their bounding boxes are strictly contained into each other, and thus,
    1950             :        no full geometry intersection or inclusion test is done
    1951             :     */
    1952             : 
    1953       14696 :     if (!bMixedUpGeometries)
    1954             :     {
    1955             :         // STEP 1: Sort polygons by descending area.
    1956         748 :         std::sort(asPolyEx.begin(), asPolyEx.end(),
    1957             :                   OGRGeometryFactoryCompareArea);
    1958             :     }
    1959       14696 :     papoPolygons = nullptr;  // Just to use to avoid it afterwards.
    1960             : 
    1961             :     /* -------------------------------------------------------------------- */
    1962             :     /*      Compute relationships, if things seem well structured.          */
    1963             :     /* -------------------------------------------------------------------- */
    1964             : 
    1965             :     // The first (largest) polygon is necessarily top-level.
    1966       14696 :     asPolyEx[0].bIsTopLevel = true;
    1967       14696 :     asPolyEx[0].poEnclosingPolygon = nullptr;
    1968             : 
    1969       14696 :     int nCountTopLevel = 1;
    1970             : 
    1971             :     // STEP 2.
    1972       18708 :     for (int i = 1; !bMixedUpGeometries && bValidTopology &&
    1973        2380 :                     i < static_cast<int>(asPolyEx.size());
    1974             :          i++)
    1975             :     {
    1976        1632 :         if (method == METHOD_ONLY_CCW && asPolyEx[i].bIsCW)
    1977             :         {
    1978         322 :             nCountTopLevel++;
    1979         322 :             asPolyEx[i].bIsTopLevel = true;
    1980         322 :             asPolyEx[i].poEnclosingPolygon = nullptr;
    1981         322 :             continue;
    1982             :         }
    1983             : 
    1984        1310 :         int j = i - 1;  // Used after for.
    1985        4280 :         for (; bValidTopology && j >= 0; j--)
    1986             :         {
    1987        3799 :             bool b_i_inside_j = false;
    1988             : 
    1989        3799 :             if (method == METHOD_ONLY_CCW && asPolyEx[j].bIsCW == false)
    1990             :             {
    1991             :                 // In that mode, i which is CCW if we reach here can only be
    1992             :                 // included in a CW polygon.
    1993         810 :                 continue;
    1994             :             }
    1995             : 
    1996        2989 :             if (asPolyEx[j].sEnvelope.Contains(asPolyEx[i].sEnvelope))
    1997             :             {
    1998         835 :                 if (bUseFastVersion)
    1999             :                 {
    2000         835 :                     if (method == METHOD_ONLY_CCW && j == 0)
    2001             :                     {
    2002             :                         // We are testing if a CCW ring is in the biggest CW
    2003             :                         // ring It *must* be inside as this is the last
    2004             :                         // candidate, otherwise the winding order rules is
    2005             :                         // broken.
    2006         231 :                         b_i_inside_j = true;
    2007             :                     }
    2008        1208 :                     else if (asPolyEx[i].bIsPolygon && asPolyEx[j].bIsPolygon &&
    2009         604 :                              asPolyEx[j]
    2010         604 :                                  .poExteriorRing->toLinearRing()
    2011         604 :                                  ->isPointOnRingBoundary(&asPolyEx[i].poAPoint,
    2012             :                                                          FALSE))
    2013             :                     {
    2014             :                         OGRLinearRing *poLR_i =
    2015          16 :                             asPolyEx[i].poExteriorRing->toLinearRing();
    2016             :                         OGRLinearRing *poLR_j =
    2017          16 :                             asPolyEx[j].poExteriorRing->toLinearRing();
    2018             : 
    2019             :                         // If the point of i is on the boundary of j, we will
    2020             :                         // iterate over the other points of i.
    2021          16 :                         const int nPoints = poLR_i->getNumPoints();
    2022          16 :                         int k = 1;  // Used after for.
    2023          32 :                         OGRPoint previousPoint = asPolyEx[i].poAPoint;
    2024          31 :                         for (; k < nPoints; k++)
    2025             :                         {
    2026          30 :                             OGRPoint point;
    2027          30 :                             poLR_i->getPoint(k, &point);
    2028          32 :                             if (point.getX() == previousPoint.getX() &&
    2029           2 :                                 point.getY() == previousPoint.getY())
    2030             :                             {
    2031           0 :                                 continue;
    2032             :                             }
    2033          30 :                             if (poLR_j->isPointOnRingBoundary(&point, FALSE))
    2034             :                             {
    2035             :                                 // If it is on the boundary of j, iterate again.
    2036             :                             }
    2037          15 :                             else if (poLR_j->isPointInRing(&point, FALSE))
    2038             :                             {
    2039             :                                 // If then point is strictly included in j, then
    2040             :                                 // i is considered inside j.
    2041          13 :                                 b_i_inside_j = true;
    2042          13 :                                 break;
    2043             :                             }
    2044             :                             else
    2045             :                             {
    2046             :                                 // If it is outside, then i cannot be inside j.
    2047           2 :                                 break;
    2048             :                             }
    2049          15 :                             previousPoint = std::move(point);
    2050             :                         }
    2051          16 :                         if (!b_i_inside_j && k == nPoints && nPoints > 2)
    2052             :                         {
    2053             :                             // All points of i are on the boundary of j.
    2054             :                             // Take a point in the middle of a segment of i and
    2055             :                             // test it against j.
    2056           1 :                             poLR_i->getPoint(0, &previousPoint);
    2057           2 :                             for (k = 1; k < nPoints; k++)
    2058             :                             {
    2059           2 :                                 OGRPoint point;
    2060           2 :                                 poLR_i->getPoint(k, &point);
    2061           2 :                                 if (point.getX() == previousPoint.getX() &&
    2062           0 :                                     point.getY() == previousPoint.getY())
    2063             :                                 {
    2064           0 :                                     continue;
    2065             :                                 }
    2066           2 :                                 OGRPoint pointMiddle;
    2067           2 :                                 pointMiddle.setX(
    2068           2 :                                     (point.getX() + previousPoint.getX()) / 2);
    2069           2 :                                 pointMiddle.setY(
    2070           2 :                                     (point.getY() + previousPoint.getY()) / 2);
    2071           2 :                                 if (poLR_j->isPointOnRingBoundary(&pointMiddle,
    2072           2 :                                                                   FALSE))
    2073             :                                 {
    2074             :                                     // If it is on the boundary of j, iterate
    2075             :                                     // again.
    2076             :                                 }
    2077           1 :                                 else if (poLR_j->isPointInRing(&pointMiddle,
    2078           1 :                                                                FALSE))
    2079             :                                 {
    2080             :                                     // If then point is strictly included in j,
    2081             :                                     // then i is considered inside j.
    2082           1 :                                     b_i_inside_j = true;
    2083           1 :                                     break;
    2084             :                                 }
    2085             :                                 else
    2086             :                                 {
    2087             :                                     // If it is outside, then i cannot be inside
    2088             :                                     // j.
    2089           0 :                                     break;
    2090             :                                 }
    2091           1 :                                 previousPoint = std::move(point);
    2092             :                             }
    2093             :                         }
    2094             :                     }
    2095             :                     // Note that isPointInRing only test strict inclusion in the
    2096             :                     // ring.
    2097        1176 :                     else if (asPolyEx[i].bIsPolygon && asPolyEx[j].bIsPolygon &&
    2098         588 :                              asPolyEx[j]
    2099         588 :                                  .poExteriorRing->toLinearRing()
    2100         588 :                                  ->isPointInRing(&asPolyEx[i].poAPoint, FALSE))
    2101             :                     {
    2102         584 :                         b_i_inside_j = true;
    2103             :                     }
    2104             :                 }
    2105           0 :                 else if (asPolyEx[j].poPolygon->Contains(asPolyEx[i].poPolygon))
    2106             :                 {
    2107           0 :                     b_i_inside_j = true;
    2108             :                 }
    2109             :             }
    2110             : 
    2111        2989 :             if (b_i_inside_j)
    2112             :             {
    2113         829 :                 if (asPolyEx[j].bIsTopLevel)
    2114             :                 {
    2115             :                     // We are a lake.
    2116         828 :                     asPolyEx[i].bIsTopLevel = false;
    2117         828 :                     asPolyEx[i].poEnclosingPolygon = asPolyEx[j].poPolygon;
    2118             :                 }
    2119             :                 else
    2120             :                 {
    2121             :                     // We are included in a something not toplevel (a lake),
    2122             :                     // so in OGCSF we are considered as toplevel too.
    2123           1 :                     nCountTopLevel++;
    2124           1 :                     asPolyEx[i].bIsTopLevel = true;
    2125           1 :                     asPolyEx[i].poEnclosingPolygon = nullptr;
    2126             :                 }
    2127         829 :                 break;
    2128             :             }
    2129             :             // Use Overlaps instead of Intersects to be more
    2130             :             // tolerant about touching polygons.
    2131           0 :             else if (bUseFastVersion ||
    2132        2160 :                      !asPolyEx[i].sEnvelope.Intersects(asPolyEx[j].sEnvelope) ||
    2133           0 :                      !asPolyEx[i].poPolygon->Overlaps(asPolyEx[j].poPolygon))
    2134             :             {
    2135             :             }
    2136             :             else
    2137             :             {
    2138             :                 // Bad... The polygons are intersecting but no one is
    2139             :                 // contained inside the other one. This is a really broken
    2140             :                 // case. We just make a multipolygon with the whole set of
    2141             :                 // polygons.
    2142           0 :                 bValidTopology = false;
    2143             : #ifdef DEBUG
    2144           0 :                 char *wkt1 = nullptr;
    2145           0 :                 char *wkt2 = nullptr;
    2146           0 :                 asPolyEx[i].poPolygon->exportToWkt(&wkt1);
    2147           0 :                 asPolyEx[j].poPolygon->exportToWkt(&wkt2);
    2148           0 :                 CPLDebug("OGR",
    2149             :                          "Bad intersection for polygons %d and %d\n"
    2150             :                          "geom %d: %s\n"
    2151             :                          "geom %d: %s",
    2152             :                          static_cast<int>(i), j, static_cast<int>(i), wkt1, j,
    2153             :                          wkt2);
    2154           0 :                 CPLFree(wkt1);
    2155           0 :                 CPLFree(wkt2);
    2156             : #endif
    2157             :             }
    2158             :         }
    2159             : 
    2160        1310 :         if (j < 0)
    2161             :         {
    2162             :             // We come here because we are not included in anything.
    2163             :             // We are toplevel.
    2164         481 :             nCountTopLevel++;
    2165         481 :             asPolyEx[i].bIsTopLevel = true;
    2166         481 :             asPolyEx[i].poEnclosingPolygon = nullptr;
    2167             :         }
    2168             :     }
    2169             : 
    2170       14696 :     if (pbIsValidGeometry)
    2171       14195 :         *pbIsValidGeometry = bValidTopology && !bMixedUpGeometries;
    2172             : 
    2173             :     /* --------------------------------------------------------------------- */
    2174             :     /*      Things broke down - just mark everything as top-level so it gets */
    2175             :     /*      turned into a multipolygon.                                      */
    2176             :     /* --------------------------------------------------------------------- */
    2177       14696 :     if (!bValidTopology || bMixedUpGeometries)
    2178             :     {
    2179       71558 :         for (auto &sPolyEx : asPolyEx)
    2180             :         {
    2181       57610 :             sPolyEx.bIsTopLevel = true;
    2182             :         }
    2183       13948 :         nCountTopLevel = static_cast<int>(asPolyEx.size());
    2184             :     }
    2185             : 
    2186             :     /* -------------------------------------------------------------------- */
    2187             :     /*      Try to turn into one or more polygons based on the ring         */
    2188             :     /*      relationships.                                                  */
    2189             :     /* -------------------------------------------------------------------- */
    2190             :     // STEP 3: Sort again in initial order.
    2191       14696 :     std::sort(asPolyEx.begin(), asPolyEx.end(),
    2192             :               OGRGeometryFactoryCompareByIndex);
    2193             : 
    2194             :     // STEP 4: Add holes as rings of their enclosing polygon.
    2195       74686 :     for (auto &sPolyEx : asPolyEx)
    2196             :     {
    2197       59990 :         if (sPolyEx.bIsTopLevel == false)
    2198             :         {
    2199         828 :             sPolyEx.poEnclosingPolygon->addRingDirectly(
    2200         828 :                 sPolyEx.poPolygon->stealExteriorRingCurve());
    2201         828 :             delete sPolyEx.poPolygon;
    2202             :         }
    2203       59162 :         else if (nCountTopLevel == 1)
    2204             :         {
    2205          91 :             geom = sPolyEx.poPolygon;
    2206             :         }
    2207             :     }
    2208             : 
    2209             :     // STEP 5: Add toplevel polygons.
    2210       14696 :     if (nCountTopLevel > 1)
    2211             :     {
    2212             :         OGRGeometryCollection *poGC =
    2213       14605 :             bHasCurves ? new OGRMultiSurface() : new OGRMultiPolygon();
    2214       74386 :         for (auto &sPolyEx : asPolyEx)
    2215             :         {
    2216       59781 :             if (sPolyEx.bIsTopLevel)
    2217             :             {
    2218       59071 :                 poGC->addGeometryDirectly(sPolyEx.poPolygon);
    2219             :             }
    2220             :         }
    2221       14605 :         geom = poGC;
    2222             :     }
    2223             : 
    2224       14696 :     return geom;
    2225             : }
    2226             : 
    2227             : /************************************************************************/
    2228             : /*                           createFromGML()                            */
    2229             : /************************************************************************/
    2230             : 
    2231             : /**
    2232             :  * \brief Create geometry from GML.
    2233             :  *
    2234             :  * This method translates a fragment of GML containing only the geometry
    2235             :  * portion into a corresponding OGRGeometry.  There are many limitations
    2236             :  * on the forms of GML geometries supported by this parser, but they are
    2237             :  * too numerous to list here.
    2238             :  *
    2239             :  * The following GML2 elements are parsed : Point, LineString, Polygon,
    2240             :  * MultiPoint, MultiLineString, MultiPolygon, MultiGeometry.
    2241             :  *
    2242             :  * The following GML3 elements are parsed : Surface,
    2243             :  * MultiSurface, PolygonPatch, Triangle, Rectangle, Curve, MultiCurve,
    2244             :  * LineStringSegment, Arc, Circle, CompositeSurface, OrientableSurface, Solid,
    2245             :  * Tin, TriangulatedSurface.
    2246             :  *
    2247             :  * Arc and Circle elements are returned as curves by default. Stroking to
    2248             :  * linestrings can be done with
    2249             :  * OGR_G_ForceTo(hGeom, OGR_GT_GetLinear(OGR_G_GetGeometryType(hGeom)), NULL).
    2250             :  * A 4 degrees step is used by default, unless the user
    2251             :  * has overridden the value with the OGR_ARC_STEPSIZE configuration variable.
    2252             :  *
    2253             :  * The C function OGR_G_CreateFromGML() is the same as this method.
    2254             :  *
    2255             :  * @param pszData The GML fragment for the geometry.
    2256             :  *
    2257             :  * @return a geometry on success, or NULL on error.
    2258             :  *
    2259             :  * @see OGR_G_ForceTo()
    2260             :  * @see OGR_GT_GetLinear()
    2261             :  * @see OGR_G_GetGeometryType()
    2262             :  */
    2263             : 
    2264           0 : OGRGeometry *OGRGeometryFactory::createFromGML(const char *pszData)
    2265             : 
    2266             : {
    2267             :     OGRGeometryH hGeom;
    2268             : 
    2269           0 :     hGeom = OGR_G_CreateFromGML(pszData);
    2270             : 
    2271           0 :     return OGRGeometry::FromHandle(hGeom);
    2272             : }
    2273             : 
    2274             : /************************************************************************/
    2275             : /*                           createFromGEOS()                           */
    2276             : /************************************************************************/
    2277             : 
    2278             : /** Builds a OGRGeometry* from a GEOSGeom.
    2279             :  * @param hGEOSCtxt GEOS context
    2280             :  * @param geosGeom GEOS geometry
    2281             :  * @return a OGRGeometry*
    2282             :  */
    2283        3685 : OGRGeometry *OGRGeometryFactory::createFromGEOS(
    2284             :     UNUSED_IF_NO_GEOS GEOSContextHandle_t hGEOSCtxt,
    2285             :     UNUSED_IF_NO_GEOS GEOSGeom geosGeom)
    2286             : 
    2287             : {
    2288             : #ifndef HAVE_GEOS
    2289             : 
    2290             :     CPLError(CE_Failure, CPLE_NotSupported, "GEOS support not enabled.");
    2291             :     return nullptr;
    2292             : 
    2293             : #else
    2294             : 
    2295        3685 :     size_t nSize = 0;
    2296        3685 :     unsigned char *pabyBuf = nullptr;
    2297        3685 :     OGRGeometry *poGeometry = nullptr;
    2298             : 
    2299             :     // Special case as POINT EMPTY cannot be translated to WKB.
    2300        3770 :     if (GEOSGeomTypeId_r(hGEOSCtxt, geosGeom) == GEOS_POINT &&
    2301          85 :         GEOSisEmpty_r(hGEOSCtxt, geosGeom))
    2302          14 :         return new OGRPoint();
    2303             : 
    2304             :     const int nCoordDim =
    2305        3671 :         GEOSGeom_getCoordinateDimension_r(hGEOSCtxt, geosGeom);
    2306        3671 :     GEOSWKBWriter *wkbwriter = GEOSWKBWriter_create_r(hGEOSCtxt);
    2307        3671 :     GEOSWKBWriter_setOutputDimension_r(hGEOSCtxt, wkbwriter, nCoordDim);
    2308        3671 :     pabyBuf = GEOSWKBWriter_write_r(hGEOSCtxt, wkbwriter, geosGeom, &nSize);
    2309        3671 :     GEOSWKBWriter_destroy_r(hGEOSCtxt, wkbwriter);
    2310             : 
    2311        3671 :     if (pabyBuf == nullptr || nSize == 0)
    2312             :     {
    2313           0 :         return nullptr;
    2314             :     }
    2315             : 
    2316        3671 :     if (OGRGeometryFactory::createFromWkb(pabyBuf, nullptr, &poGeometry,
    2317        3671 :                                           static_cast<int>(nSize)) !=
    2318             :         OGRERR_NONE)
    2319             :     {
    2320           0 :         poGeometry = nullptr;
    2321             :     }
    2322             : 
    2323        3671 :     GEOSFree_r(hGEOSCtxt, pabyBuf);
    2324             : 
    2325        3671 :     return poGeometry;
    2326             : 
    2327             : #endif  // HAVE_GEOS
    2328             : }
    2329             : 
    2330             : /************************************************************************/
    2331             : /*                              haveGEOS()                              */
    2332             : /************************************************************************/
    2333             : 
    2334             : /**
    2335             :  * \brief Test if GEOS enabled.
    2336             :  *
    2337             :  * This static method returns TRUE if GEOS support is built into OGR,
    2338             :  * otherwise it returns FALSE.
    2339             :  *
    2340             :  * @return TRUE if available, otherwise FALSE.
    2341             :  */
    2342             : 
    2343       33220 : bool OGRGeometryFactory::haveGEOS()
    2344             : 
    2345             : {
    2346             : #ifndef HAVE_GEOS
    2347             :     return false;
    2348             : #else
    2349       33220 :     return true;
    2350             : #endif
    2351             : }
    2352             : 
    2353             : /************************************************************************/
    2354             : /*                           createFromFgf()                            */
    2355             : /************************************************************************/
    2356             : 
    2357             : /**
    2358             :  * \brief Create a geometry object of the appropriate type from its FGF (FDO
    2359             :  * Geometry Format) binary representation.
    2360             :  *
    2361             :  * Also note that this is a static method, and that there
    2362             :  * is no need to instantiate an OGRGeometryFactory object.
    2363             :  *
    2364             :  * The C function OGR_G_CreateFromFgf() is the same as this method.
    2365             :  *
    2366             :  * @param pabyData pointer to the input BLOB data.
    2367             :  * @param poSR pointer to the spatial reference to be assigned to the
    2368             :  *             created geometry object.  This may be NULL.
    2369             :  * @param ppoReturn the newly created geometry object will be assigned to the
    2370             :  *                  indicated pointer on return.  This will be NULL in case
    2371             :  *                  of failure, but NULL might be a valid return for a NULL
    2372             :  * shape.
    2373             :  * @param nBytes the number of bytes available in pabyData.
    2374             :  * @param pnBytesConsumed if not NULL, it will be set to the number of bytes
    2375             :  * consumed (at most nBytes).
    2376             :  *
    2377             :  * @return OGRERR_NONE if all goes well, otherwise any of
    2378             :  * OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUPPORTED_GEOMETRY_TYPE, or
    2379             :  * OGRERR_CORRUPT_DATA may be returned.
    2380             :  */
    2381             : 
    2382         291 : OGRErr OGRGeometryFactory::createFromFgf(const void *pabyData,
    2383             :                                          OGRSpatialReference *poSR,
    2384             :                                          OGRGeometry **ppoReturn, int nBytes,
    2385             :                                          int *pnBytesConsumed)
    2386             : 
    2387             : {
    2388         291 :     return createFromFgfInternal(static_cast<const GByte *>(pabyData), poSR,
    2389         291 :                                  ppoReturn, nBytes, pnBytesConsumed, 0);
    2390             : }
    2391             : 
    2392             : /************************************************************************/
    2393             : /*                       createFromFgfInternal()                        */
    2394             : /************************************************************************/
    2395             : 
    2396         294 : OGRErr OGRGeometryFactory::createFromFgfInternal(
    2397             :     const unsigned char *pabyData, OGRSpatialReference *poSR,
    2398             :     OGRGeometry **ppoReturn, int nBytes, int *pnBytesConsumed, int nRecLevel)
    2399             : {
    2400             :     // Arbitrary value, but certainly large enough for reasonable usages.
    2401         294 :     if (nRecLevel == 32)
    2402             :     {
    2403           0 :         CPLError(CE_Failure, CPLE_AppDefined,
    2404             :                  "Too many recursion levels (%d) while parsing FGF geometry.",
    2405             :                  nRecLevel);
    2406           0 :         return OGRERR_CORRUPT_DATA;
    2407             :     }
    2408             : 
    2409         294 :     *ppoReturn = nullptr;
    2410             : 
    2411         294 :     if (nBytes < 4)
    2412         109 :         return OGRERR_NOT_ENOUGH_DATA;
    2413             : 
    2414             :     /* -------------------------------------------------------------------- */
    2415             :     /*      Decode the geometry type.                                       */
    2416             :     /* -------------------------------------------------------------------- */
    2417         185 :     GInt32 nGType = 0;
    2418         185 :     memcpy(&nGType, pabyData + 0, 4);
    2419         185 :     CPL_LSBPTR32(&nGType);
    2420             : 
    2421         185 :     if (nGType < 0 || nGType > 13)
    2422         171 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
    2423             : 
    2424             :     /* -------------------------------------------------------------------- */
    2425             :     /*      Decode the dimensionality if appropriate.                       */
    2426             :     /* -------------------------------------------------------------------- */
    2427          14 :     int nTupleSize = 0;
    2428          14 :     GInt32 nGDim = 0;
    2429             : 
    2430             :     // TODO: Why is this a switch?
    2431          14 :     switch (nGType)
    2432             :     {
    2433           9 :         case 1:  // Point
    2434             :         case 2:  // LineString
    2435             :         case 3:  // Polygon
    2436           9 :             if (nBytes < 8)
    2437           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2438             : 
    2439           9 :             memcpy(&nGDim, pabyData + 4, 4);
    2440           9 :             CPL_LSBPTR32(&nGDim);
    2441             : 
    2442           9 :             if (nGDim < 0 || nGDim > 3)
    2443           0 :                 return OGRERR_CORRUPT_DATA;
    2444             : 
    2445           9 :             nTupleSize = 2;
    2446           9 :             if (nGDim & 0x01)  // Z
    2447           1 :                 nTupleSize++;
    2448           9 :             if (nGDim & 0x02)  // M
    2449           0 :                 nTupleSize++;
    2450             : 
    2451           9 :             break;
    2452             : 
    2453           5 :         default:
    2454           5 :             break;
    2455             :     }
    2456             : 
    2457          14 :     OGRGeometry *poGeom = nullptr;
    2458             : 
    2459             :     /* -------------------------------------------------------------------- */
    2460             :     /*      None                                                            */
    2461             :     /* -------------------------------------------------------------------- */
    2462          14 :     if (nGType == 0)
    2463             :     {
    2464           0 :         if (pnBytesConsumed)
    2465           0 :             *pnBytesConsumed = 4;
    2466             :     }
    2467             : 
    2468             :     /* -------------------------------------------------------------------- */
    2469             :     /*      Point                                                           */
    2470             :     /* -------------------------------------------------------------------- */
    2471          14 :     else if (nGType == 1)
    2472             :     {
    2473           3 :         if (nBytes < nTupleSize * 8 + 8)
    2474           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2475             : 
    2476           3 :         double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2477           3 :         memcpy(adfTuple, pabyData + 8, nTupleSize * 8);
    2478             : #ifdef CPL_MSB
    2479             :         for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2480             :             CPL_SWAP64PTR(adfTuple + iOrdinal);
    2481             : #endif
    2482           3 :         if (nTupleSize > 2)
    2483           1 :             poGeom = new OGRPoint(adfTuple[0], adfTuple[1], adfTuple[2]);
    2484             :         else
    2485           2 :             poGeom = new OGRPoint(adfTuple[0], adfTuple[1]);
    2486             : 
    2487           3 :         if (pnBytesConsumed)
    2488           1 :             *pnBytesConsumed = 8 + nTupleSize * 8;
    2489             :     }
    2490             : 
    2491             :     /* -------------------------------------------------------------------- */
    2492             :     /*      LineString                                                      */
    2493             :     /* -------------------------------------------------------------------- */
    2494          11 :     else if (nGType == 2)
    2495             :     {
    2496           2 :         if (nBytes < 12)
    2497           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2498             : 
    2499           2 :         GInt32 nPointCount = 0;
    2500           2 :         memcpy(&nPointCount, pabyData + 8, 4);
    2501           2 :         CPL_LSBPTR32(&nPointCount);
    2502             : 
    2503           2 :         if (nPointCount < 0 || nPointCount > INT_MAX / (nTupleSize * 8))
    2504           0 :             return OGRERR_CORRUPT_DATA;
    2505             : 
    2506           2 :         if (nBytes - 12 < nTupleSize * 8 * nPointCount)
    2507           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2508             : 
    2509           2 :         OGRLineString *poLS = new OGRLineString();
    2510           2 :         poGeom = poLS;
    2511           2 :         poLS->setNumPoints(nPointCount);
    2512             : 
    2513           4 :         for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    2514             :         {
    2515           2 :             double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2516           2 :             memcpy(adfTuple, pabyData + 12 + 8 * nTupleSize * iPoint,
    2517           2 :                    nTupleSize * 8);
    2518             : #ifdef CPL_MSB
    2519             :             for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2520             :                 CPL_SWAP64PTR(adfTuple + iOrdinal);
    2521             : #endif
    2522           2 :             if (nTupleSize > 2)
    2523           0 :                 poLS->setPoint(iPoint, adfTuple[0], adfTuple[1], adfTuple[2]);
    2524             :             else
    2525           2 :                 poLS->setPoint(iPoint, adfTuple[0], adfTuple[1]);
    2526             :         }
    2527             : 
    2528           2 :         if (pnBytesConsumed)
    2529           0 :             *pnBytesConsumed = 12 + nTupleSize * 8 * nPointCount;
    2530             :     }
    2531             : 
    2532             :     /* -------------------------------------------------------------------- */
    2533             :     /*      Polygon                                                         */
    2534             :     /* -------------------------------------------------------------------- */
    2535           9 :     else if (nGType == 3)
    2536             :     {
    2537           4 :         if (nBytes < 12)
    2538           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2539             : 
    2540           4 :         GInt32 nRingCount = 0;
    2541           4 :         memcpy(&nRingCount, pabyData + 8, 4);
    2542           4 :         CPL_LSBPTR32(&nRingCount);
    2543             : 
    2544           4 :         if (nRingCount < 0 || nRingCount > INT_MAX / 4)
    2545           0 :             return OGRERR_CORRUPT_DATA;
    2546             : 
    2547             :         // Each ring takes at least 4 bytes.
    2548           4 :         if (nBytes - 12 < nRingCount * 4)
    2549           0 :             return OGRERR_NOT_ENOUGH_DATA;
    2550             : 
    2551           4 :         int nNextByte = 12;
    2552             : 
    2553           4 :         OGRPolygon *poPoly = new OGRPolygon();
    2554           4 :         poGeom = poPoly;
    2555             : 
    2556          10 :         for (int iRing = 0; iRing < nRingCount; iRing++)
    2557             :         {
    2558           6 :             if (nBytes - nNextByte < 4)
    2559             :             {
    2560           0 :                 delete poGeom;
    2561           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2562             :             }
    2563             : 
    2564           6 :             GInt32 nPointCount = 0;
    2565           6 :             memcpy(&nPointCount, pabyData + nNextByte, 4);
    2566           6 :             CPL_LSBPTR32(&nPointCount);
    2567             : 
    2568           6 :             if (nPointCount < 0 || nPointCount > INT_MAX / (nTupleSize * 8))
    2569             :             {
    2570           0 :                 delete poGeom;
    2571           0 :                 return OGRERR_CORRUPT_DATA;
    2572             :             }
    2573             : 
    2574           6 :             nNextByte += 4;
    2575             : 
    2576           6 :             if (nBytes - nNextByte < nTupleSize * 8 * nPointCount)
    2577             :             {
    2578           0 :                 delete poGeom;
    2579           0 :                 return OGRERR_NOT_ENOUGH_DATA;
    2580             :             }
    2581             : 
    2582           6 :             OGRLinearRing *poLR = new OGRLinearRing();
    2583           6 :             poLR->setNumPoints(nPointCount);
    2584             : 
    2585          12 :             for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    2586             :             {
    2587           6 :                 double adfTuple[4] = {0.0, 0.0, 0.0, 0.0};
    2588           6 :                 memcpy(adfTuple, pabyData + nNextByte, nTupleSize * 8);
    2589           6 :                 nNextByte += nTupleSize * 8;
    2590             : 
    2591             : #ifdef CPL_MSB
    2592             :                 for (int iOrdinal = 0; iOrdinal < nTupleSize; iOrdinal++)
    2593             :                     CPL_SWAP64PTR(adfTuple + iOrdinal);
    2594             : #endif
    2595           6 :                 if (nTupleSize > 2)
    2596           0 :                     poLR->setPoint(iPoint, adfTuple[0], adfTuple[1],
    2597             :                                    adfTuple[2]);
    2598             :                 else
    2599           6 :                     poLR->setPoint(iPoint, adfTuple[0], adfTuple[1]);
    2600             :             }
    2601             : 
    2602           6 :             poPoly->addRingDirectly(poLR);
    2603             :         }
    2604             : 
    2605           4 :         if (pnBytesConsumed)
    2606           2 :             *pnBytesConsumed = nNextByte;
    2607             :     }
    2608             : 
    2609             :     /* -------------------------------------------------------------------- */
    2610             :     /*      GeometryCollections of various kinds.                           */
    2611             :     /* -------------------------------------------------------------------- */
    2612           5 :     else if (nGType == 4      // MultiPoint
    2613           5 :              || nGType == 5   // MultiLineString
    2614           5 :              || nGType == 6   // MultiPolygon
    2615           3 :              || nGType == 7)  // MultiGeometry
    2616             :     {
    2617           5 :         if (nBytes < 8)
    2618           3 :             return OGRERR_NOT_ENOUGH_DATA;
    2619             : 
    2620           5 :         GInt32 nGeomCount = 0;
    2621           5 :         memcpy(&nGeomCount, pabyData + 4, 4);
    2622           5 :         CPL_LSBPTR32(&nGeomCount);
    2623             : 
    2624           5 :         if (nGeomCount < 0 || nGeomCount > INT_MAX / 4)
    2625           0 :             return OGRERR_CORRUPT_DATA;
    2626             : 
    2627             :         // Each geometry takes at least 4 bytes.
    2628           5 :         if (nBytes - 8 < 4 * nGeomCount)
    2629           2 :             return OGRERR_NOT_ENOUGH_DATA;
    2630             : 
    2631           3 :         OGRGeometryCollection *poGC = nullptr;
    2632           3 :         if (nGType == 4)
    2633           0 :             poGC = new OGRMultiPoint();
    2634           3 :         else if (nGType == 5)
    2635           0 :             poGC = new OGRMultiLineString();
    2636           3 :         else if (nGType == 6)
    2637           1 :             poGC = new OGRMultiPolygon();
    2638           2 :         else if (nGType == 7)
    2639           2 :             poGC = new OGRGeometryCollection();
    2640             : 
    2641           3 :         int nBytesUsed = 8;
    2642             : 
    2643           5 :         for (int iGeom = 0; iGeom < nGeomCount; iGeom++)
    2644             :         {
    2645           3 :             int nThisGeomSize = 0;
    2646           3 :             OGRGeometry *poThisGeom = nullptr;
    2647             : 
    2648           6 :             const OGRErr eErr = createFromFgfInternal(
    2649           3 :                 pabyData + nBytesUsed, poSR, &poThisGeom, nBytes - nBytesUsed,
    2650             :                 &nThisGeomSize, nRecLevel + 1);
    2651           3 :             if (eErr != OGRERR_NONE)
    2652             :             {
    2653           0 :                 delete poGC;
    2654           1 :                 return eErr;
    2655             :             }
    2656             : 
    2657           3 :             nBytesUsed += nThisGeomSize;
    2658           3 :             if (poThisGeom != nullptr)
    2659             :             {
    2660           3 :                 const OGRErr eErr2 = poGC->addGeometryDirectly(poThisGeom);
    2661           3 :                 if (eErr2 != OGRERR_NONE)
    2662             :                 {
    2663           1 :                     delete poGC;
    2664           1 :                     delete poThisGeom;
    2665           1 :                     return eErr2;
    2666             :                 }
    2667             :             }
    2668             :         }
    2669             : 
    2670           2 :         poGeom = poGC;
    2671           2 :         if (pnBytesConsumed)
    2672           2 :             *pnBytesConsumed = nBytesUsed;
    2673             :     }
    2674             : 
    2675             :     /* -------------------------------------------------------------------- */
    2676             :     /*      Currently unsupported geometry.                                 */
    2677             :     /*                                                                      */
    2678             :     /*      We need to add 10/11/12/13 curve types in some fashion.         */
    2679             :     /* -------------------------------------------------------------------- */
    2680             :     else
    2681             :     {
    2682           0 :         return OGRERR_UNSUPPORTED_GEOMETRY_TYPE;
    2683             :     }
    2684             : 
    2685             :     /* -------------------------------------------------------------------- */
    2686             :     /*      Assign spatial reference system.                                */
    2687             :     /* -------------------------------------------------------------------- */
    2688          11 :     if (poGeom != nullptr && poSR)
    2689           0 :         poGeom->assignSpatialReference(poSR);
    2690          11 :     *ppoReturn = poGeom;
    2691             : 
    2692          11 :     return OGRERR_NONE;
    2693             : }
    2694             : 
    2695             : /************************************************************************/
    2696             : /*                        OGR_G_CreateFromFgf()                         */
    2697             : /************************************************************************/
    2698             : 
    2699             : /**
    2700             :  * \brief Create a geometry object of the appropriate type from its FGF
    2701             :  * (FDO Geometry Format) binary representation.
    2702             :  *
    2703             :  * See OGRGeometryFactory::createFromFgf() */
    2704           0 : OGRErr CPL_DLL OGR_G_CreateFromFgf(const void *pabyData,
    2705             :                                    OGRSpatialReferenceH hSRS,
    2706             :                                    OGRGeometryH *phGeometry, int nBytes,
    2707             :                                    int *pnBytesConsumed)
    2708             : 
    2709             : {
    2710           0 :     return OGRGeometryFactory::createFromFgf(
    2711             :         pabyData, OGRSpatialReference::FromHandle(hSRS),
    2712           0 :         reinterpret_cast<OGRGeometry **>(phGeometry), nBytes, pnBytesConsumed);
    2713             : }
    2714             : 
    2715             : /************************************************************************/
    2716             : /*                SplitLineStringAtDateline()                           */
    2717             : /************************************************************************/
    2718             : 
    2719           8 : static void SplitLineStringAtDateline(OGRGeometryCollection *poMulti,
    2720             :                                       const OGRLineString *poLS,
    2721             :                                       double dfDateLineOffset, double dfXOffset)
    2722             : {
    2723           8 :     const double dfLeftBorderX = 180 - dfDateLineOffset;
    2724           8 :     const double dfRightBorderX = -180 + dfDateLineOffset;
    2725           8 :     const double dfDiffSpace = 360 - dfDateLineOffset;
    2726             : 
    2727           8 :     const bool bIs3D = poLS->getCoordinateDimension() == 3;
    2728           8 :     OGRLineString *poNewLS = new OGRLineString();
    2729           8 :     poMulti->addGeometryDirectly(poNewLS);
    2730          35 :     for (int i = 0; i < poLS->getNumPoints(); i++)
    2731             :     {
    2732          27 :         const double dfX = poLS->getX(i) + dfXOffset;
    2733          27 :         if (i > 0 && fabs(dfX - (poLS->getX(i - 1) + dfXOffset)) > dfDiffSpace)
    2734             :         {
    2735           9 :             double dfX1 = poLS->getX(i - 1) + dfXOffset;
    2736           9 :             double dfY1 = poLS->getY(i - 1);
    2737           9 :             double dfZ1 = poLS->getY(i - 1);
    2738           9 :             double dfX2 = poLS->getX(i) + dfXOffset;
    2739           9 :             double dfY2 = poLS->getY(i);
    2740           9 :             double dfZ2 = poLS->getY(i);
    2741             : 
    2742           8 :             if (dfX1 > -180 && dfX1 < dfRightBorderX && dfX2 == 180 &&
    2743           0 :                 i + 1 < poLS->getNumPoints() &&
    2744          17 :                 poLS->getX(i + 1) + dfXOffset > -180 &&
    2745           0 :                 poLS->getX(i + 1) + dfXOffset < dfRightBorderX)
    2746             :             {
    2747           0 :                 if (bIs3D)
    2748           0 :                     poNewLS->addPoint(-180, poLS->getY(i), poLS->getZ(i));
    2749             :                 else
    2750           0 :                     poNewLS->addPoint(-180, poLS->getY(i));
    2751             : 
    2752           0 :                 i++;
    2753             : 
    2754           0 :                 if (bIs3D)
    2755           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i),
    2756             :                                       poLS->getZ(i));
    2757             :                 else
    2758           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i));
    2759           0 :                 continue;
    2760             :             }
    2761           4 :             else if (dfX1 > dfLeftBorderX && dfX1 < 180 && dfX2 == -180 &&
    2762           0 :                      i + 1 < poLS->getNumPoints() &&
    2763          13 :                      poLS->getX(i + 1) + dfXOffset > dfLeftBorderX &&
    2764           0 :                      poLS->getX(i + 1) + dfXOffset < 180)
    2765             :             {
    2766           0 :                 if (bIs3D)
    2767           0 :                     poNewLS->addPoint(180, poLS->getY(i), poLS->getZ(i));
    2768             :                 else
    2769           0 :                     poNewLS->addPoint(180, poLS->getY(i));
    2770             : 
    2771           0 :                 i++;
    2772             : 
    2773           0 :                 if (bIs3D)
    2774           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i),
    2775             :                                       poLS->getZ(i));
    2776             :                 else
    2777           0 :                     poNewLS->addPoint(poLS->getX(i) + dfXOffset, poLS->getY(i));
    2778           0 :                 continue;
    2779             :             }
    2780             : 
    2781           9 :             if (dfX1 < dfRightBorderX && dfX2 > dfLeftBorderX)
    2782             :             {
    2783           5 :                 std::swap(dfX1, dfX2);
    2784           5 :                 std::swap(dfY1, dfY2);
    2785           5 :                 std::swap(dfZ1, dfZ2);
    2786             :             }
    2787           9 :             if (dfX1 > dfLeftBorderX && dfX2 < dfRightBorderX)
    2788           9 :                 dfX2 += 360;
    2789             : 
    2790           9 :             if (dfX1 <= 180 && dfX2 >= 180 && dfX1 < dfX2)
    2791             :             {
    2792           9 :                 const double dfRatio = (180 - dfX1) / (dfX2 - dfX1);
    2793           9 :                 const double dfY = dfRatio * dfY2 + (1 - dfRatio) * dfY1;
    2794           9 :                 const double dfZ = dfRatio * dfZ2 + (1 - dfRatio) * dfZ1;
    2795             :                 double dfNewX =
    2796           9 :                     poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? 180 : -180;
    2797          18 :                 if (poNewLS->getNumPoints() == 0 ||
    2798          18 :                     poNewLS->getX(poNewLS->getNumPoints() - 1) != dfNewX ||
    2799           2 :                     poNewLS->getY(poNewLS->getNumPoints() - 1) != dfY)
    2800             :                 {
    2801           7 :                     if (bIs3D)
    2802           0 :                         poNewLS->addPoint(dfNewX, dfY, dfZ);
    2803             :                     else
    2804           7 :                         poNewLS->addPoint(dfNewX, dfY);
    2805             :                 }
    2806           9 :                 poNewLS = new OGRLineString();
    2807           9 :                 if (bIs3D)
    2808           0 :                     poNewLS->addPoint(
    2809           0 :                         poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? -180
    2810             :                                                                       : 180,
    2811             :                         dfY, dfZ);
    2812             :                 else
    2813           9 :                     poNewLS->addPoint(
    2814           9 :                         poLS->getX(i - 1) + dfXOffset > dfLeftBorderX ? -180
    2815             :                                                                       : 180,
    2816             :                         dfY);
    2817           9 :                 poMulti->addGeometryDirectly(poNewLS);
    2818             :             }
    2819             :             else
    2820             :             {
    2821           0 :                 poNewLS = new OGRLineString();
    2822           0 :                 poMulti->addGeometryDirectly(poNewLS);
    2823             :             }
    2824             :         }
    2825          27 :         if (bIs3D)
    2826           0 :             poNewLS->addPoint(dfX, poLS->getY(i), poLS->getZ(i));
    2827             :         else
    2828          27 :             poNewLS->addPoint(dfX, poLS->getY(i));
    2829             :     }
    2830           8 : }
    2831             : 
    2832             : /************************************************************************/
    2833             : /*               FixPolygonCoordinatesAtDateLine()                      */
    2834             : /************************************************************************/
    2835             : 
    2836             : #ifdef HAVE_GEOS
    2837           5 : static void FixPolygonCoordinatesAtDateLine(OGRPolygon *poPoly,
    2838             :                                             double dfDateLineOffset)
    2839             : {
    2840           5 :     const double dfLeftBorderX = 180 - dfDateLineOffset;
    2841           5 :     const double dfRightBorderX = -180 + dfDateLineOffset;
    2842           5 :     const double dfDiffSpace = 360 - dfDateLineOffset;
    2843             : 
    2844          10 :     for (int iPart = 0; iPart < 1 + poPoly->getNumInteriorRings(); iPart++)
    2845             :     {
    2846           5 :         OGRLineString *poLS = (iPart == 0) ? poPoly->getExteriorRing()
    2847           5 :                                            : poPoly->getInteriorRing(iPart - 1);
    2848           5 :         bool bGoEast = false;
    2849           5 :         const bool bIs3D = poLS->getCoordinateDimension() == 3;
    2850          41 :         for (int i = 1; i < poLS->getNumPoints(); i++)
    2851             :         {
    2852          36 :             double dfX = poLS->getX(i);
    2853          36 :             const double dfPrevX = poLS->getX(i - 1);
    2854          36 :             const double dfDiffLong = fabs(dfX - dfPrevX);
    2855          36 :             if (dfDiffLong > dfDiffSpace)
    2856             :             {
    2857          21 :                 if ((dfPrevX > dfLeftBorderX && dfX < dfRightBorderX) ||
    2858           6 :                     (dfX < 0 && bGoEast))
    2859             :                 {
    2860          18 :                     dfX += 360;
    2861          18 :                     bGoEast = true;
    2862          18 :                     if (bIs3D)
    2863           0 :                         poLS->setPoint(i, dfX, poLS->getY(i), poLS->getZ(i));
    2864             :                     else
    2865          18 :                         poLS->setPoint(i, dfX, poLS->getY(i));
    2866             :                 }
    2867           3 :                 else if (dfPrevX < dfRightBorderX && dfX > dfLeftBorderX)
    2868             :                 {
    2869          10 :                     for (int j = i - 1; j >= 0; j--)
    2870             :                     {
    2871           7 :                         dfX = poLS->getX(j);
    2872           7 :                         if (dfX < 0)
    2873             :                         {
    2874           7 :                             if (bIs3D)
    2875           0 :                                 poLS->setPoint(j, dfX + 360, poLS->getY(j),
    2876             :                                                poLS->getZ(j));
    2877             :                             else
    2878           7 :                                 poLS->setPoint(j, dfX + 360, poLS->getY(j));
    2879             :                         }
    2880             :                     }
    2881           3 :                     bGoEast = false;
    2882             :                 }
    2883             :                 else
    2884             :                 {
    2885           0 :                     bGoEast = false;
    2886             :                 }
    2887             :             }
    2888             :         }
    2889             :     }
    2890           5 : }
    2891             : #endif
    2892             : 
    2893             : /************************************************************************/
    2894             : /*                            AddOffsetToLon()                          */
    2895             : /************************************************************************/
    2896             : 
    2897          17 : static void AddOffsetToLon(OGRGeometry *poGeom, double dfOffset)
    2898             : {
    2899          17 :     switch (wkbFlatten(poGeom->getGeometryType()))
    2900             :     {
    2901           7 :         case wkbPolygon:
    2902             :         {
    2903          14 :             for (auto poSubGeom : *(poGeom->toPolygon()))
    2904             :             {
    2905           7 :                 AddOffsetToLon(poSubGeom, dfOffset);
    2906             :             }
    2907             : 
    2908           7 :             break;
    2909             :         }
    2910             : 
    2911           0 :         case wkbMultiLineString:
    2912             :         case wkbMultiPolygon:
    2913             :         case wkbGeometryCollection:
    2914             :         {
    2915           0 :             for (auto poSubGeom : *(poGeom->toGeometryCollection()))
    2916             :             {
    2917           0 :                 AddOffsetToLon(poSubGeom, dfOffset);
    2918             :             }
    2919             : 
    2920           0 :             break;
    2921             :         }
    2922             : 
    2923          10 :         case wkbLineString:
    2924             :         {
    2925          10 :             OGRLineString *poLineString = poGeom->toLineString();
    2926          10 :             const int nPointCount = poLineString->getNumPoints();
    2927          10 :             const int nCoordDim = poLineString->getCoordinateDimension();
    2928          63 :             for (int iPoint = 0; iPoint < nPointCount; iPoint++)
    2929             :             {
    2930          53 :                 if (nCoordDim == 2)
    2931         106 :                     poLineString->setPoint(
    2932          53 :                         iPoint, poLineString->getX(iPoint) + dfOffset,
    2933             :                         poLineString->getY(iPoint));
    2934             :                 else
    2935           0 :                     poLineString->setPoint(
    2936           0 :                         iPoint, poLineString->getX(iPoint) + dfOffset,
    2937             :                         poLineString->getY(iPoint), poLineString->getZ(iPoint));
    2938             :             }
    2939          10 :             break;
    2940             :         }
    2941             : 
    2942           0 :         default:
    2943           0 :             break;
    2944             :     }
    2945          17 : }
    2946             : 
    2947             : /************************************************************************/
    2948             : /*                        AddSimpleGeomToMulti()                        */
    2949             : /************************************************************************/
    2950             : 
    2951             : #ifdef HAVE_GEOS
    2952          12 : static void AddSimpleGeomToMulti(OGRGeometryCollection *poMulti,
    2953             :                                  const OGRGeometry *poGeom)
    2954             : {
    2955          12 :     switch (wkbFlatten(poGeom->getGeometryType()))
    2956             :     {
    2957          12 :         case wkbPolygon:
    2958             :         case wkbLineString:
    2959          12 :             poMulti->addGeometry(poGeom);
    2960          12 :             break;
    2961             : 
    2962           0 :         case wkbMultiLineString:
    2963             :         case wkbMultiPolygon:
    2964             :         case wkbGeometryCollection:
    2965             :         {
    2966           0 :             for (const auto poSubGeom : *(poGeom->toGeometryCollection()))
    2967             :             {
    2968           0 :                 AddSimpleGeomToMulti(poMulti, poSubGeom);
    2969             :             }
    2970           0 :             break;
    2971             :         }
    2972             : 
    2973           0 :         default:
    2974           0 :             break;
    2975             :     }
    2976          12 : }
    2977             : #endif  // #ifdef HAVE_GEOS
    2978             : 
    2979             : /************************************************************************/
    2980             : /*                       WrapPointDateLine()                            */
    2981             : /************************************************************************/
    2982             : 
    2983          14 : static void WrapPointDateLine(OGRPoint *poPoint)
    2984             : {
    2985          14 :     if (poPoint->getX() > 180)
    2986             :     {
    2987           2 :         poPoint->setX(fmod(poPoint->getX() + 180, 360) - 180);
    2988             :     }
    2989          12 :     else if (poPoint->getX() < -180)
    2990             :     {
    2991           3 :         poPoint->setX(-(fmod(-poPoint->getX() + 180, 360) - 180));
    2992             :     }
    2993          14 : }
    2994             : 
    2995             : /************************************************************************/
    2996             : /*                 CutGeometryOnDateLineAndAddToMulti()                 */
    2997             : /************************************************************************/
    2998             : 
    2999          69 : static void CutGeometryOnDateLineAndAddToMulti(OGRGeometryCollection *poMulti,
    3000             :                                                const OGRGeometry *poGeom,
    3001             :                                                double dfDateLineOffset)
    3002             : {
    3003          69 :     const OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    3004          69 :     switch (eGeomType)
    3005             :     {
    3006           1 :         case wkbPoint:
    3007             :         {
    3008           1 :             auto poPoint = poGeom->toPoint()->clone();
    3009           1 :             WrapPointDateLine(poPoint);
    3010           1 :             poMulti->addGeometryDirectly(poPoint);
    3011           1 :             break;
    3012             :         }
    3013             : 
    3014          54 :         case wkbPolygon:
    3015             :         case wkbLineString:
    3016             :         {
    3017          54 :             bool bSplitLineStringAtDateline = false;
    3018          54 :             OGREnvelope oEnvelope;
    3019             : 
    3020          54 :             poGeom->getEnvelope(&oEnvelope);
    3021          54 :             const bool bAroundMinus180 = (oEnvelope.MinX < -180.0);
    3022             : 
    3023             :             // Naive heuristics... Place to improve.
    3024             : #ifdef HAVE_GEOS
    3025          54 :             std::unique_ptr<OGRGeometry> poDupGeom;
    3026          54 :             bool bWrapDateline = false;
    3027             : #endif
    3028             : 
    3029          54 :             const double dfLeftBorderX = 180 - dfDateLineOffset;
    3030          54 :             const double dfRightBorderX = -180 + dfDateLineOffset;
    3031          54 :             const double dfDiffSpace = 360 - dfDateLineOffset;
    3032             : 
    3033          54 :             const double dfXOffset = (bAroundMinus180) ? 360.0 : 0.0;
    3034          54 :             if (oEnvelope.MinX < -180 || oEnvelope.MaxX > 180 ||
    3035          52 :                 (oEnvelope.MinX + dfXOffset > dfLeftBorderX &&
    3036          12 :                  oEnvelope.MaxX + dfXOffset > 180))
    3037             :             {
    3038             : #ifndef HAVE_GEOS
    3039             :                 CPLError(CE_Failure, CPLE_NotSupported,
    3040             :                          "GEOS support not enabled.");
    3041             : #else
    3042           2 :                 bWrapDateline = true;
    3043             : #endif
    3044             :             }
    3045             :             else
    3046             :             {
    3047             :                 auto poLS = eGeomType == wkbPolygon
    3048          52 :                                 ? poGeom->toPolygon()->getExteriorRing()
    3049          14 :                                 : poGeom->toLineString();
    3050          52 :                 if (poLS)
    3051             :                 {
    3052          52 :                     double dfMaxSmallDiffLong = 0;
    3053          52 :                     bool bHasBigDiff = false;
    3054             :                     // Detect big gaps in longitude.
    3055         294 :                     for (int i = 1; i < poLS->getNumPoints(); i++)
    3056             :                     {
    3057         242 :                         const double dfPrevX = poLS->getX(i - 1) + dfXOffset;
    3058         242 :                         const double dfX = poLS->getX(i) + dfXOffset;
    3059         242 :                         const double dfDiffLong = fabs(dfX - dfPrevX);
    3060             : 
    3061         242 :                         if (dfDiffLong > dfDiffSpace &&
    3062          11 :                             ((dfX > dfLeftBorderX &&
    3063          10 :                               dfPrevX < dfRightBorderX) ||
    3064          10 :                              (dfPrevX > dfLeftBorderX && dfX < dfRightBorderX)))
    3065          21 :                             bHasBigDiff = true;
    3066         221 :                         else if (dfDiffLong > dfMaxSmallDiffLong)
    3067          55 :                             dfMaxSmallDiffLong = dfDiffLong;
    3068             :                     }
    3069          52 :                     if (bHasBigDiff && dfMaxSmallDiffLong < dfDateLineOffset)
    3070             :                     {
    3071          13 :                         if (eGeomType == wkbLineString)
    3072           8 :                             bSplitLineStringAtDateline = true;
    3073             :                         else
    3074             :                         {
    3075             : #ifndef HAVE_GEOS
    3076             :                             CPLError(CE_Failure, CPLE_NotSupported,
    3077             :                                      "GEOS support not enabled.");
    3078             : #else
    3079           5 :                             poDupGeom.reset(poGeom->clone());
    3080           5 :                             FixPolygonCoordinatesAtDateLine(
    3081             :                                 poDupGeom->toPolygon(), dfDateLineOffset);
    3082             : 
    3083           5 :                             OGREnvelope sEnvelope;
    3084           5 :                             poDupGeom->getEnvelope(&sEnvelope);
    3085           5 :                             bWrapDateline = sEnvelope.MinX != sEnvelope.MaxX;
    3086             : #endif
    3087             :                         }
    3088             :                     }
    3089             :                 }
    3090             :             }
    3091             : 
    3092          54 :             if (bSplitLineStringAtDateline)
    3093             :             {
    3094           8 :                 SplitLineStringAtDateline(poMulti, poGeom->toLineString(),
    3095             :                                           dfDateLineOffset,
    3096             :                                           (bAroundMinus180) ? 360.0 : 0.0);
    3097             :             }
    3098             : #ifdef HAVE_GEOS
    3099          46 :             else if (bWrapDateline)
    3100             :             {
    3101             :                 const OGRGeometry *poWorkGeom =
    3102           6 :                     poDupGeom ? poDupGeom.get() : poGeom;
    3103           6 :                 OGRGeometry *poRectangle1 = nullptr;
    3104           6 :                 OGRGeometry *poRectangle2 = nullptr;
    3105           6 :                 const char *pszWKT1 =
    3106             :                     !bAroundMinus180
    3107           6 :                         ? "POLYGON((-180 90,180 90,180 -90,-180 -90,-180 90))"
    3108             :                         : "POLYGON((180 90,-180 90,-180 -90,180 -90,180 90))";
    3109           6 :                 const char *pszWKT2 =
    3110             :                     !bAroundMinus180
    3111           6 :                         ? "POLYGON((180 90,360 90,360 -90,180 -90,180 90))"
    3112             :                         : "POLYGON((-180 90,-360 90,-360 -90,-180 -90,-180 "
    3113             :                           "90))";
    3114           6 :                 OGRGeometryFactory::createFromWkt(pszWKT1, nullptr,
    3115             :                                                   &poRectangle1);
    3116           6 :                 OGRGeometryFactory::createFromWkt(pszWKT2, nullptr,
    3117             :                                                   &poRectangle2);
    3118             :                 auto poGeom1 = std::unique_ptr<OGRGeometry>(
    3119          12 :                     poWorkGeom->Intersection(poRectangle1));
    3120             :                 auto poGeom2 = std::unique_ptr<OGRGeometry>(
    3121          12 :                     poWorkGeom->Intersection(poRectangle2));
    3122           6 :                 delete poRectangle1;
    3123           6 :                 delete poRectangle2;
    3124             : 
    3125           6 :                 if (poGeom1 != nullptr && poGeom2 != nullptr)
    3126             :                 {
    3127           6 :                     AddSimpleGeomToMulti(poMulti, poGeom1.get());
    3128           6 :                     AddOffsetToLon(poGeom2.get(),
    3129             :                                    !bAroundMinus180 ? -360.0 : 360.0);
    3130           6 :                     AddSimpleGeomToMulti(poMulti, poGeom2.get());
    3131             :                 }
    3132             :                 else
    3133             :                 {
    3134           0 :                     AddSimpleGeomToMulti(poMulti, poGeom);
    3135             :                 }
    3136             :             }
    3137             : #endif
    3138             :             else
    3139             :             {
    3140          40 :                 poMulti->addGeometry(poGeom);
    3141             :             }
    3142          54 :             break;
    3143             :         }
    3144             : 
    3145          14 :         case wkbMultiLineString:
    3146             :         case wkbMultiPolygon:
    3147             :         case wkbGeometryCollection:
    3148             :         {
    3149          45 :             for (const auto poSubGeom : *(poGeom->toGeometryCollection()))
    3150             :             {
    3151          31 :                 CutGeometryOnDateLineAndAddToMulti(poMulti, poSubGeom,
    3152             :                                                    dfDateLineOffset);
    3153             :             }
    3154          14 :             break;
    3155             :         }
    3156             : 
    3157           0 :         default:
    3158           0 :             break;
    3159             :     }
    3160          69 : }
    3161             : 
    3162             : #ifdef HAVE_GEOS
    3163             : 
    3164             : /************************************************************************/
    3165             : /*                             RemovePoint()                            */
    3166             : /************************************************************************/
    3167             : 
    3168           9 : static void RemovePoint(OGRGeometry *poGeom, OGRPoint *poPoint)
    3169             : {
    3170           9 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3171           9 :     switch (eType)
    3172             :     {
    3173           4 :         case wkbLineString:
    3174             :         {
    3175           4 :             OGRLineString *poLS = poGeom->toLineString();
    3176           4 :             const bool bIs3D = (poLS->getCoordinateDimension() == 3);
    3177           4 :             int j = 0;
    3178          32 :             for (int i = 0; i < poLS->getNumPoints(); i++)
    3179             :             {
    3180          30 :                 if (poLS->getX(i) != poPoint->getX() ||
    3181           2 :                     poLS->getY(i) != poPoint->getY())
    3182             :                 {
    3183          26 :                     if (i > j)
    3184             :                     {
    3185           4 :                         if (bIs3D)
    3186             :                         {
    3187           0 :                             poLS->setPoint(j, poLS->getX(i), poLS->getY(i),
    3188             :                                            poLS->getZ(i));
    3189             :                         }
    3190             :                         else
    3191             :                         {
    3192           4 :                             poLS->setPoint(j, poLS->getX(i), poLS->getY(i));
    3193             :                         }
    3194             :                     }
    3195          26 :                     j++;
    3196             :                 }
    3197             :             }
    3198           4 :             poLS->setNumPoints(j);
    3199           4 :             break;
    3200             :         }
    3201             : 
    3202           4 :         case wkbPolygon:
    3203             :         {
    3204           4 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3205           4 :             if (poPoly->getExteriorRing() != nullptr)
    3206             :             {
    3207           4 :                 RemovePoint(poPoly->getExteriorRing(), poPoint);
    3208           4 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3209             :                 {
    3210           0 :                     RemovePoint(poPoly->getInteriorRing(i), poPoint);
    3211             :                 }
    3212             :             }
    3213           4 :             break;
    3214             :         }
    3215             : 
    3216           1 :         case wkbMultiLineString:
    3217             :         case wkbMultiPolygon:
    3218             :         case wkbGeometryCollection:
    3219             :         {
    3220           1 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3221           3 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3222             :             {
    3223           2 :                 RemovePoint(poGC->getGeometryRef(i), poPoint);
    3224             :             }
    3225           1 :             break;
    3226             :         }
    3227             : 
    3228           0 :         default:
    3229           0 :             break;
    3230             :     }
    3231           9 : }
    3232             : 
    3233             : /************************************************************************/
    3234             : /*                              GetDist()                               */
    3235             : /************************************************************************/
    3236             : 
    3237          51 : static double GetDist(double dfDeltaX, double dfDeltaY)
    3238             : {
    3239          51 :     return sqrt(dfDeltaX * dfDeltaX + dfDeltaY * dfDeltaY);
    3240             : }
    3241             : 
    3242             : /************************************************************************/
    3243             : /*                             AlterPole()                              */
    3244             : /*                                                                      */
    3245             : /* Replace and point at the pole by points really close to the pole,    */
    3246             : /* but on the previous and later segments.                              */
    3247             : /************************************************************************/
    3248             : 
    3249           5 : static void AlterPole(OGRGeometry *poGeom, OGRPoint *poPole,
    3250             :                       bool bIsRing = false)
    3251             : {
    3252           5 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3253           5 :     switch (eType)
    3254             :     {
    3255           2 :         case wkbLineString:
    3256             :         {
    3257           2 :             if (!bIsRing)
    3258           0 :                 return;
    3259           2 :             OGRLineString *poLS = poGeom->toLineString();
    3260           2 :             const int nNumPoints = poLS->getNumPoints();
    3261           2 :             if (nNumPoints >= 4)
    3262             :             {
    3263           2 :                 const bool bIs3D = (poLS->getCoordinateDimension() == 3);
    3264           4 :                 std::vector<OGRRawPoint> aoPoints;
    3265           4 :                 std::vector<double> adfZ;
    3266           2 :                 bool bMustClose = false;
    3267          10 :                 for (int i = 0; i < nNumPoints; i++)
    3268             :                 {
    3269           8 :                     const double dfX = poLS->getX(i);
    3270           8 :                     const double dfY = poLS->getY(i);
    3271           8 :                     if (dfX == poPole->getX() && dfY == poPole->getY())
    3272             :                     {
    3273             :                         // Replace the pole by points really close to it
    3274           2 :                         if (i == 0)
    3275           0 :                             bMustClose = true;
    3276           2 :                         if (i == nNumPoints - 1)
    3277           0 :                             continue;
    3278           2 :                         const int iBefore = i > 0 ? i - 1 : nNumPoints - 2;
    3279           2 :                         double dfXBefore = poLS->getX(iBefore);
    3280           2 :                         double dfYBefore = poLS->getY(iBefore);
    3281             :                         double dfNorm =
    3282           2 :                             GetDist(dfXBefore - dfX, dfYBefore - dfY);
    3283           2 :                         double dfXInterp =
    3284           2 :                             dfX + (dfXBefore - dfX) / dfNorm * 1.0e-7;
    3285           2 :                         double dfYInterp =
    3286           2 :                             dfY + (dfYBefore - dfY) / dfNorm * 1.0e-7;
    3287           2 :                         OGRRawPoint oPoint;
    3288           2 :                         oPoint.x = dfXInterp;
    3289           2 :                         oPoint.y = dfYInterp;
    3290           2 :                         aoPoints.push_back(oPoint);
    3291           2 :                         adfZ.push_back(poLS->getZ(i));
    3292             : 
    3293           2 :                         const int iAfter = i + 1;
    3294           2 :                         double dfXAfter = poLS->getX(iAfter);
    3295           2 :                         double dfYAfter = poLS->getY(iAfter);
    3296           2 :                         dfNorm = GetDist(dfXAfter - dfX, dfYAfter - dfY);
    3297           2 :                         dfXInterp = dfX + (dfXAfter - dfX) / dfNorm * 1e-7;
    3298           2 :                         dfYInterp = dfY + (dfYAfter - dfY) / dfNorm * 1e-7;
    3299           2 :                         oPoint.x = dfXInterp;
    3300           2 :                         oPoint.y = dfYInterp;
    3301           2 :                         aoPoints.push_back(oPoint);
    3302           2 :                         adfZ.push_back(poLS->getZ(i));
    3303             :                     }
    3304             :                     else
    3305             :                     {
    3306           6 :                         OGRRawPoint oPoint;
    3307           6 :                         oPoint.x = dfX;
    3308           6 :                         oPoint.y = dfY;
    3309           6 :                         aoPoints.push_back(oPoint);
    3310           6 :                         adfZ.push_back(poLS->getZ(i));
    3311             :                     }
    3312             :                 }
    3313           2 :                 if (bMustClose)
    3314             :                 {
    3315           0 :                     aoPoints.push_back(aoPoints[0]);
    3316           0 :                     adfZ.push_back(adfZ[0]);
    3317             :                 }
    3318             : 
    3319           4 :                 poLS->setPoints(static_cast<int>(aoPoints.size()),
    3320           2 :                                 &(aoPoints[0]), bIs3D ? &adfZ[0] : nullptr);
    3321             :             }
    3322           2 :             break;
    3323             :         }
    3324             : 
    3325           2 :         case wkbPolygon:
    3326             :         {
    3327           2 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3328           2 :             if (poPoly->getExteriorRing() != nullptr)
    3329             :             {
    3330           2 :                 AlterPole(poPoly->getExteriorRing(), poPole, true);
    3331           2 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3332             :                 {
    3333           0 :                     AlterPole(poPoly->getInteriorRing(i), poPole, true);
    3334             :                 }
    3335             :             }
    3336           2 :             break;
    3337             :         }
    3338             : 
    3339           1 :         case wkbMultiLineString:
    3340             :         case wkbMultiPolygon:
    3341             :         case wkbGeometryCollection:
    3342             :         {
    3343           1 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3344           2 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3345             :             {
    3346           1 :                 AlterPole(poGC->getGeometryRef(i), poPole);
    3347             :             }
    3348           1 :             break;
    3349             :         }
    3350             : 
    3351           0 :         default:
    3352           0 :             break;
    3353             :     }
    3354             : }
    3355             : 
    3356             : /************************************************************************/
    3357             : /*                        IsPolarToGeographic()                         */
    3358             : /*                                                                      */
    3359             : /* Returns true if poCT transforms from a projection that includes one  */
    3360             : /* of the pole in a continuous way.                                     */
    3361             : /************************************************************************/
    3362             : 
    3363          20 : static bool IsPolarToGeographic(OGRCoordinateTransformation *poCT,
    3364             :                                 OGRCoordinateTransformation *poRevCT,
    3365             :                                 bool &bIsNorthPolarOut)
    3366             : {
    3367          20 :     bool bIsNorthPolar = false;
    3368          20 :     bool bIsSouthPolar = false;
    3369          20 :     double x = 0.0;
    3370          20 :     double y = 90.0;
    3371             : 
    3372          20 :     const bool bBackupEmitErrors = poCT->GetEmitErrors();
    3373          20 :     poRevCT->SetEmitErrors(false);
    3374          20 :     poCT->SetEmitErrors(false);
    3375             : 
    3376          20 :     if (poRevCT->Transform(1, &x, &y) &&
    3377             :         // Surprisingly, pole south projects correctly back &
    3378             :         // forth for antarctic polar stereographic.  Therefore, check that
    3379             :         // the projected value is not too big.
    3380          20 :         fabs(x) < 1e10 && fabs(y) < 1e10)
    3381             :     {
    3382          18 :         double x_tab[] = {x, x - 1e5, x + 1e5};
    3383          18 :         double y_tab[] = {y, y - 1e5, y + 1e5};
    3384          18 :         if (poCT->Transform(3, x_tab, y_tab) &&
    3385          18 :             fabs(y_tab[0] - (90.0)) < 1e-10 &&
    3386          53 :             fabs(x_tab[2] - x_tab[1]) > 170 &&
    3387          17 :             fabs(y_tab[2] - y_tab[1]) < 1e-10)
    3388             :         {
    3389          17 :             bIsNorthPolar = true;
    3390             :         }
    3391             :     }
    3392             : 
    3393          20 :     x = 0.0;
    3394          20 :     y = -90.0;
    3395          20 :     if (poRevCT->Transform(1, &x, &y) && fabs(x) < 1e10 && fabs(y) < 1e10)
    3396             :     {
    3397          15 :         double x_tab[] = {x, x - 1e5, x + 1e5};
    3398          15 :         double y_tab[] = {y, y - 1e5, y + 1e5};
    3399          15 :         if (poCT->Transform(3, x_tab, y_tab) &&
    3400          15 :             fabs(y_tab[0] - (-90.0)) < 1e-10 &&
    3401          44 :             fabs(x_tab[2] - x_tab[1]) > 170 &&
    3402          14 :             fabs(y_tab[2] - y_tab[1]) < 1e-10)
    3403             :         {
    3404          14 :             bIsSouthPolar = true;
    3405             :         }
    3406             :     }
    3407             : 
    3408          20 :     poCT->SetEmitErrors(bBackupEmitErrors);
    3409             : 
    3410          20 :     if (bIsNorthPolar && bIsSouthPolar)
    3411             :     {
    3412          13 :         bIsNorthPolar = false;
    3413          13 :         bIsSouthPolar = false;
    3414             :     }
    3415             : 
    3416          20 :     bIsNorthPolarOut = bIsNorthPolar;
    3417          20 :     return bIsNorthPolar || bIsSouthPolar;
    3418             : }
    3419             : 
    3420             : /************************************************************************/
    3421             : /*                 TransformBeforePolarToGeographic()                   */
    3422             : /*                                                                      */
    3423             : /* Transform the geometry (by intersection), so as to cut each geometry */
    3424             : /* that crosses the pole, in 2 parts. Do also tricks for geometries     */
    3425             : /* that just touch the pole.                                            */
    3426             : /************************************************************************/
    3427             : 
    3428           6 : static std::unique_ptr<OGRGeometry> TransformBeforePolarToGeographic(
    3429             :     OGRCoordinateTransformation *poRevCT, bool bIsNorthPolar,
    3430             :     std::unique_ptr<OGRGeometry> poDstGeom, bool &bNeedPostCorrectionOut)
    3431             : {
    3432           6 :     const int nSign = (bIsNorthPolar) ? 1 : -1;
    3433             : 
    3434             :     // Does the geometry fully contains the pole ? */
    3435           6 :     double dfXPole = 0.0;
    3436           6 :     double dfYPole = nSign * 90.0;
    3437           6 :     poRevCT->Transform(1, &dfXPole, &dfYPole);
    3438          12 :     OGRPoint oPole(dfXPole, dfYPole);
    3439           6 :     const bool bContainsPole = CPL_TO_BOOL(poDstGeom->Contains(&oPole));
    3440             : 
    3441           6 :     const double EPS = 1e-9;
    3442             : 
    3443             :     // Does the geometry touches the pole and intersects the antimeridian ?
    3444           6 :     double dfNearPoleAntiMeridianX = 180.0;
    3445           6 :     double dfNearPoleAntiMeridianY = nSign * (90.0 - EPS);
    3446           6 :     poRevCT->Transform(1, &dfNearPoleAntiMeridianX, &dfNearPoleAntiMeridianY);
    3447             :     OGRPoint oNearPoleAntimeridian(dfNearPoleAntiMeridianX,
    3448          12 :                                    dfNearPoleAntiMeridianY);
    3449             :     const bool bContainsNearPoleAntimeridian =
    3450           6 :         CPL_TO_BOOL(poDstGeom->Contains(&oNearPoleAntimeridian));
    3451             : 
    3452             :     // Does the geometry touches the pole (but not intersect the antimeridian) ?
    3453          10 :     const bool bRegularTouchesPole = !bContainsPole &&
    3454           9 :                                      !bContainsNearPoleAntimeridian &&
    3455           3 :                                      CPL_TO_BOOL(poDstGeom->Touches(&oPole));
    3456             : 
    3457             :     // Create a polygon of nearly a full hemisphere, but excluding the anti
    3458             :     // meridian and the pole.
    3459          12 :     OGRPolygon oCutter;
    3460           6 :     OGRLinearRing *poRing = new OGRLinearRing();
    3461           6 :     poRing->addPoint(180.0 - EPS, 0);
    3462           6 :     poRing->addPoint(180.0 - EPS, nSign * (90.0 - EPS));
    3463             :     // If the geometry doesn't contain the pole, then we add it to the cutter
    3464             :     // geometry, but will later remove it completely (geometry touching the
    3465             :     // pole but intersecting the antimeridian), or will replace it by 2
    3466             :     // close points (geometry touching the pole without intersecting the
    3467             :     // antimeridian)
    3468           6 :     if (!bContainsPole)
    3469           4 :         poRing->addPoint(180.0, nSign * 90);
    3470           6 :     poRing->addPoint(-180.0 + EPS, nSign * (90.0 - EPS));
    3471           6 :     poRing->addPoint(-180.0 + EPS, 0);
    3472           6 :     poRing->addPoint(180.0 - EPS, 0);
    3473           6 :     oCutter.addRingDirectly(poRing);
    3474             : 
    3475           6 :     if (oCutter.transform(poRevCT) == OGRERR_NONE &&
    3476             :         // Check that longitudes +/- 180 are continuous
    3477             :         // in the polar projection
    3478          10 :         fabs(poRing->getX(0) - poRing->getX(poRing->getNumPoints() - 2)) < 1 &&
    3479           4 :         (bContainsPole || bContainsNearPoleAntimeridian || bRegularTouchesPole))
    3480             :     {
    3481           5 :         if (bContainsPole || bContainsNearPoleAntimeridian)
    3482             :         {
    3483             :             auto poNewGeom =
    3484           6 :                 std::unique_ptr<OGRGeometry>(poDstGeom->Difference(&oCutter));
    3485           3 :             if (poNewGeom)
    3486             :             {
    3487           3 :                 if (bContainsNearPoleAntimeridian)
    3488           3 :                     RemovePoint(poNewGeom.get(), &oPole);
    3489           3 :                 poDstGeom = std::move(poNewGeom);
    3490             :             }
    3491             :         }
    3492             : 
    3493           5 :         if (bRegularTouchesPole)
    3494             :         {
    3495           2 :             AlterPole(poDstGeom.get(), &oPole);
    3496             :         }
    3497             : 
    3498           5 :         bNeedPostCorrectionOut = true;
    3499             :     }
    3500          12 :     return poDstGeom;
    3501             : }
    3502             : 
    3503             : /************************************************************************/
    3504             : /*                   IsAntimeridianProjToGeographic()                   */
    3505             : /*                                                                      */
    3506             : /* Returns true if poCT transforms from a projection that includes the  */
    3507             : /* antimeridian in a continuous way.                                    */
    3508             : /************************************************************************/
    3509             : 
    3510          17 : static bool IsAntimeridianProjToGeographic(OGRCoordinateTransformation *poCT,
    3511             :                                            OGRCoordinateTransformation *poRevCT,
    3512             :                                            OGRGeometry *poDstGeometry)
    3513             : {
    3514          17 :     const bool bBackupEmitErrors = poCT->GetEmitErrors();
    3515          17 :     poRevCT->SetEmitErrors(false);
    3516          17 :     poCT->SetEmitErrors(false);
    3517             : 
    3518             :     // Find a reasonable latitude for the geometry
    3519          17 :     OGREnvelope sEnvelope;
    3520          17 :     poDstGeometry->getEnvelope(&sEnvelope);
    3521          34 :     OGRPoint pMean(sEnvelope.MinX, (sEnvelope.MinY + sEnvelope.MaxY) / 2);
    3522          17 :     if (pMean.transform(poCT) != OGRERR_NONE)
    3523             :     {
    3524           0 :         poCT->SetEmitErrors(bBackupEmitErrors);
    3525           0 :         return false;
    3526             :     }
    3527          17 :     const double dfMeanLat = pMean.getY();
    3528             : 
    3529             :     // Check that close points on each side of the antimeridian in (long, lat)
    3530             :     // project to close points in the source projection, and check that they
    3531             :     // roundtrip correctly.
    3532          17 :     const double EPS = 1.0e-8;
    3533          17 :     double x1 = 180 - EPS;
    3534          17 :     double y1 = dfMeanLat;
    3535          17 :     double x2 = -180 + EPS;
    3536          17 :     double y2 = dfMeanLat;
    3537          51 :     if (!poRevCT->Transform(1, &x1, &y1) || !poRevCT->Transform(1, &x2, &y2) ||
    3538          32 :         GetDist(x2 - x1, y2 - y1) > 1 || !poCT->Transform(1, &x1, &y1) ||
    3539          30 :         !poCT->Transform(1, &x2, &y2) ||
    3540          49 :         GetDist(x1 - (180 - EPS), y1 - dfMeanLat) > 2 * EPS ||
    3541          15 :         GetDist(x2 - (-180 + EPS), y2 - dfMeanLat) > 2 * EPS)
    3542             :     {
    3543           2 :         poCT->SetEmitErrors(bBackupEmitErrors);
    3544           2 :         return false;
    3545             :     }
    3546             : 
    3547          15 :     poCT->SetEmitErrors(bBackupEmitErrors);
    3548             : 
    3549          15 :     return true;
    3550             : }
    3551             : 
    3552             : /************************************************************************/
    3553             : /*                      CollectPointsOnAntimeridian()                   */
    3554             : /*                                                                      */
    3555             : /* Collect points that are the intersection of the lines of the geometry*/
    3556             : /* with the antimeridian.                                               */
    3557             : /************************************************************************/
    3558             : 
    3559          21 : static void CollectPointsOnAntimeridian(OGRGeometry *poGeom,
    3560             :                                         OGRCoordinateTransformation *poCT,
    3561             :                                         OGRCoordinateTransformation *poRevCT,
    3562             :                                         std::vector<OGRRawPoint> &aoPoints)
    3563             : {
    3564          21 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3565          21 :     switch (eType)
    3566             :     {
    3567          11 :         case wkbLineString:
    3568             :         {
    3569          11 :             OGRLineString *poLS = poGeom->toLineString();
    3570          11 :             const int nNumPoints = poLS->getNumPoints();
    3571          44 :             for (int i = 0; i < nNumPoints - 1; i++)
    3572             :             {
    3573          33 :                 const double dfX = poLS->getX(i);
    3574          33 :                 const double dfY = poLS->getY(i);
    3575          33 :                 const double dfX2 = poLS->getX(i + 1);
    3576          33 :                 const double dfY2 = poLS->getY(i + 1);
    3577          33 :                 double dfXTrans = dfX;
    3578          33 :                 double dfYTrans = dfY;
    3579          33 :                 double dfX2Trans = dfX2;
    3580          33 :                 double dfY2Trans = dfY2;
    3581          33 :                 poCT->Transform(1, &dfXTrans, &dfYTrans);
    3582          33 :                 poCT->Transform(1, &dfX2Trans, &dfY2Trans);
    3583             :                 // Are we crossing the antimeridian ? (detecting by inversion of
    3584             :                 // sign of X)
    3585          33 :                 if ((dfX2 - dfX) * (dfX2Trans - dfXTrans) < 0 ||
    3586          14 :                     (dfX == dfX2 && dfX2Trans * dfXTrans < 0 &&
    3587           1 :                      fabs(fabs(dfXTrans) - 180) < 10 &&
    3588           1 :                      fabs(fabs(dfX2Trans) - 180) < 10))
    3589             :                 {
    3590          17 :                     double dfXStart = dfX;
    3591          17 :                     double dfYStart = dfY;
    3592          17 :                     double dfXEnd = dfX2;
    3593          17 :                     double dfYEnd = dfY2;
    3594          17 :                     double dfXStartTrans = dfXTrans;
    3595          17 :                     double dfXEndTrans = dfX2Trans;
    3596          17 :                     int iIter = 0;
    3597          17 :                     const double EPS = 1e-8;
    3598             :                     // Find point of the segment intersecting the antimeridian
    3599             :                     // by dichotomy
    3600         453 :                     for (;
    3601         470 :                          iIter < 50 && (fabs(fabs(dfXStartTrans) - 180) > EPS ||
    3602          25 :                                         fabs(fabs(dfXEndTrans) - 180) > EPS);
    3603             :                          ++iIter)
    3604             :                     {
    3605         453 :                         double dfXMid = (dfXStart + dfXEnd) / 2;
    3606         453 :                         double dfYMid = (dfYStart + dfYEnd) / 2;
    3607         453 :                         double dfXMidTrans = dfXMid;
    3608         453 :                         double dfYMidTrans = dfYMid;
    3609         453 :                         poCT->Transform(1, &dfXMidTrans, &dfYMidTrans);
    3610         453 :                         if ((dfXMid - dfXStart) *
    3611         453 :                                     (dfXMidTrans - dfXStartTrans) <
    3612         247 :                                 0 ||
    3613          22 :                             (dfXMid == dfXStart &&
    3614          22 :                              dfXMidTrans * dfXStartTrans < 0))
    3615             :                         {
    3616         214 :                             dfXEnd = dfXMid;
    3617         214 :                             dfYEnd = dfYMid;
    3618         214 :                             dfXEndTrans = dfXMidTrans;
    3619             :                         }
    3620             :                         else
    3621             :                         {
    3622         239 :                             dfXStart = dfXMid;
    3623         239 :                             dfYStart = dfYMid;
    3624         239 :                             dfXStartTrans = dfXMidTrans;
    3625             :                         }
    3626             :                     }
    3627          17 :                     if (iIter < 50)
    3628             :                     {
    3629          17 :                         OGRRawPoint oPoint;
    3630          17 :                         oPoint.x = (dfXStart + dfXEnd) / 2;
    3631          17 :                         oPoint.y = (dfYStart + dfYEnd) / 2;
    3632          17 :                         poCT->Transform(1, &(oPoint.x), &(oPoint.y));
    3633          17 :                         oPoint.x = 180.0;
    3634          17 :                         aoPoints.push_back(oPoint);
    3635             :                     }
    3636             :                 }
    3637             :             }
    3638          11 :             break;
    3639             :         }
    3640             : 
    3641           6 :         case wkbPolygon:
    3642             :         {
    3643           6 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3644           6 :             if (poPoly->getExteriorRing() != nullptr)
    3645             :             {
    3646           6 :                 CollectPointsOnAntimeridian(poPoly->getExteriorRing(), poCT,
    3647             :                                             poRevCT, aoPoints);
    3648           6 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3649             :                 {
    3650           0 :                     CollectPointsOnAntimeridian(poPoly->getInteriorRing(i),
    3651             :                                                 poCT, poRevCT, aoPoints);
    3652             :                 }
    3653             :             }
    3654           6 :             break;
    3655             :         }
    3656             : 
    3657           4 :         case wkbMultiLineString:
    3658             :         case wkbMultiPolygon:
    3659             :         case wkbGeometryCollection:
    3660             :         {
    3661           4 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3662           8 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3663             :             {
    3664           4 :                 CollectPointsOnAntimeridian(poGC->getGeometryRef(i), poCT,
    3665             :                                             poRevCT, aoPoints);
    3666             :             }
    3667           4 :             break;
    3668             :         }
    3669             : 
    3670           0 :         default:
    3671           0 :             break;
    3672             :     }
    3673          21 : }
    3674             : 
    3675             : /************************************************************************/
    3676             : /*                         SortPointsByAscendingY()                     */
    3677             : /************************************************************************/
    3678             : 
    3679             : struct SortPointsByAscendingY
    3680             : {
    3681           8 :     bool operator()(const OGRRawPoint &a, const OGRRawPoint &b)
    3682             :     {
    3683           8 :         return a.y < b.y;
    3684             :     }
    3685             : };
    3686             : 
    3687             : /************************************************************************/
    3688             : /*              TransformBeforeAntimeridianToGeographic()               */
    3689             : /*                                                                      */
    3690             : /* Transform the geometry (by intersection), so as to cut each geometry */
    3691             : /* that crosses the antimeridian, in 2 parts.                           */
    3692             : /************************************************************************/
    3693             : 
    3694          15 : static std::unique_ptr<OGRGeometry> TransformBeforeAntimeridianToGeographic(
    3695             :     OGRCoordinateTransformation *poCT, OGRCoordinateTransformation *poRevCT,
    3696             :     std::unique_ptr<OGRGeometry> poDstGeom, bool &bNeedPostCorrectionOut)
    3697             : {
    3698          15 :     OGREnvelope sEnvelope;
    3699          15 :     poDstGeom->getEnvelope(&sEnvelope);
    3700          30 :     OGRPoint pMean(sEnvelope.MinX, (sEnvelope.MinY + sEnvelope.MaxY) / 2);
    3701          15 :     pMean.transform(poCT);
    3702          15 :     const double dfMeanLat = pMean.getY();
    3703          15 :     pMean.setX(180.0);
    3704          15 :     pMean.setY(dfMeanLat);
    3705          15 :     pMean.transform(poRevCT);
    3706             :     // Check if the antimeridian crosses the bbox of our geometry
    3707          28 :     if (!(pMean.getX() >= sEnvelope.MinX && pMean.getY() >= sEnvelope.MinY &&
    3708          13 :           pMean.getX() <= sEnvelope.MaxX && pMean.getY() <= sEnvelope.MaxY))
    3709             :     {
    3710           4 :         return poDstGeom;
    3711             :     }
    3712             : 
    3713             :     // Collect points that are the intersection of the lines of the geometry
    3714             :     // with the antimeridian
    3715          22 :     std::vector<OGRRawPoint> aoPoints;
    3716          11 :     CollectPointsOnAntimeridian(poDstGeom.get(), poCT, poRevCT, aoPoints);
    3717          11 :     if (aoPoints.empty())
    3718           0 :         return poDstGeom;
    3719             : 
    3720             :     SortPointsByAscendingY sortFunc;
    3721          11 :     std::sort(aoPoints.begin(), aoPoints.end(), sortFunc);
    3722             : 
    3723          11 :     const double EPS = 1e-9;
    3724             : 
    3725             :     // Build a very thin polygon cutting the antimeridian at our points
    3726          11 :     OGRLinearRing *poLR = new OGRLinearRing;
    3727             :     {
    3728          11 :         double x = 180.0 - EPS;
    3729          11 :         double y = aoPoints[0].y - EPS;
    3730          11 :         poRevCT->Transform(1, &x, &y);
    3731          11 :         poLR->addPoint(x, y);
    3732             :     }
    3733          28 :     for (const auto &oPoint : aoPoints)
    3734             :     {
    3735          17 :         double x = 180.0 - EPS;
    3736          17 :         double y = oPoint.y;
    3737          17 :         poRevCT->Transform(1, &x, &y);
    3738          17 :         poLR->addPoint(x, y);
    3739             :     }
    3740             :     {
    3741          11 :         double x = 180.0 - EPS;
    3742          11 :         double y = aoPoints.back().y + EPS;
    3743          11 :         poRevCT->Transform(1, &x, &y);
    3744          11 :         poLR->addPoint(x, y);
    3745             :     }
    3746             :     {
    3747          11 :         double x = 180.0 + EPS;
    3748          11 :         double y = aoPoints.back().y + EPS;
    3749          11 :         poRevCT->Transform(1, &x, &y);
    3750          11 :         poLR->addPoint(x, y);
    3751             :     }
    3752          28 :     for (size_t i = aoPoints.size(); i > 0;)
    3753             :     {
    3754          17 :         --i;
    3755          17 :         const OGRRawPoint &oPoint = aoPoints[i];
    3756          17 :         double x = 180.0 + EPS;
    3757          17 :         double y = oPoint.y;
    3758          17 :         poRevCT->Transform(1, &x, &y);
    3759          17 :         poLR->addPoint(x, y);
    3760             :     }
    3761             :     {
    3762          11 :         double x = 180.0 + EPS;
    3763          11 :         double y = aoPoints[0].y - EPS;
    3764          11 :         poRevCT->Transform(1, &x, &y);
    3765          11 :         poLR->addPoint(x, y);
    3766             :     }
    3767          11 :     poLR->closeRings();
    3768             : 
    3769          22 :     OGRPolygon oPolyToCut;
    3770          11 :     oPolyToCut.addRingDirectly(poLR);
    3771             : 
    3772             : #if DEBUG_VERBOSE
    3773             :     char *pszWKT = NULL;
    3774             :     oPolyToCut.exportToWkt(&pszWKT);
    3775             :     CPLDebug("OGR", "Geometry to cut: %s", pszWKT);
    3776             :     CPLFree(pszWKT);
    3777             : #endif
    3778             : 
    3779             :     // Get the geometry without the antimeridian
    3780             :     auto poInter =
    3781          22 :         std::unique_ptr<OGRGeometry>(poDstGeom->Difference(&oPolyToCut));
    3782          11 :     if (poInter != nullptr)
    3783             :     {
    3784          11 :         poDstGeom = std::move(poInter);
    3785          11 :         bNeedPostCorrectionOut = true;
    3786             :     }
    3787             : 
    3788          11 :     return poDstGeom;
    3789             : }
    3790             : 
    3791             : /************************************************************************/
    3792             : /*                 SnapCoordsCloseToLatLongBounds()                     */
    3793             : /*                                                                      */
    3794             : /* This function snaps points really close to the antimerdian or poles  */
    3795             : /* to their exact longitudes/latitudes.                                 */
    3796             : /************************************************************************/
    3797             : 
    3798          59 : static void SnapCoordsCloseToLatLongBounds(OGRGeometry *poGeom)
    3799             : {
    3800          59 :     const OGRwkbGeometryType eType = wkbFlatten(poGeom->getGeometryType());
    3801          59 :     switch (eType)
    3802             :     {
    3803          28 :         case wkbLineString:
    3804             :         {
    3805          28 :             OGRLineString *poLS = poGeom->toLineString();
    3806          28 :             const double EPS = 1e-8;
    3807         165 :             for (int i = 0; i < poLS->getNumPoints(); i++)
    3808             :             {
    3809         274 :                 OGRPoint p;
    3810         137 :                 poLS->getPoint(i, &p);
    3811         137 :                 if (fabs(p.getX() - 180.0) < EPS)
    3812             :                 {
    3813          36 :                     p.setX(180.0);
    3814          36 :                     poLS->setPoint(i, &p);
    3815             :                 }
    3816         101 :                 else if (fabs(p.getX() - -180.0) < EPS)
    3817             :                 {
    3818          31 :                     p.setX(-180.0);
    3819          31 :                     poLS->setPoint(i, &p);
    3820             :                 }
    3821             : 
    3822         137 :                 if (fabs(p.getY() - 90.0) < EPS)
    3823             :                 {
    3824           8 :                     p.setY(90.0);
    3825           8 :                     poLS->setPoint(i, &p);
    3826             :                 }
    3827         129 :                 else if (fabs(p.getY() - -90.0) < EPS)
    3828             :                 {
    3829           2 :                     p.setY(-90.0);
    3830           2 :                     poLS->setPoint(i, &p);
    3831             :                 }
    3832             :             }
    3833          28 :             break;
    3834             :         }
    3835             : 
    3836          18 :         case wkbPolygon:
    3837             :         {
    3838          18 :             OGRPolygon *poPoly = poGeom->toPolygon();
    3839          18 :             if (poPoly->getExteriorRing() != nullptr)
    3840             :             {
    3841          18 :                 SnapCoordsCloseToLatLongBounds(poPoly->getExteriorRing());
    3842          18 :                 for (int i = 0; i < poPoly->getNumInteriorRings(); ++i)
    3843             :                 {
    3844           0 :                     SnapCoordsCloseToLatLongBounds(poPoly->getInteriorRing(i));
    3845             :                 }
    3846             :             }
    3847          18 :             break;
    3848             :         }
    3849             : 
    3850          13 :         case wkbMultiLineString:
    3851             :         case wkbMultiPolygon:
    3852             :         case wkbGeometryCollection:
    3853             :         {
    3854          13 :             OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    3855          38 :             for (int i = 0; i < poGC->getNumGeometries(); ++i)
    3856             :             {
    3857          25 :                 SnapCoordsCloseToLatLongBounds(poGC->getGeometryRef(i));
    3858             :             }
    3859          13 :             break;
    3860             :         }
    3861             : 
    3862           0 :         default:
    3863           0 :             break;
    3864             :     }
    3865          59 : }
    3866             : 
    3867             : #endif
    3868             : 
    3869             : /************************************************************************/
    3870             : /*                  TransformWithOptionsCache::Private                  */
    3871             : /************************************************************************/
    3872             : 
    3873             : struct OGRGeometryFactory::TransformWithOptionsCache::Private
    3874             : {
    3875             :     const OGRSpatialReference *poSourceCRS = nullptr;
    3876             :     const OGRSpatialReference *poTargetCRS = nullptr;
    3877             :     const OGRCoordinateTransformation *poCT = nullptr;
    3878             :     std::unique_ptr<OGRCoordinateTransformation> poRevCT{};
    3879             :     bool bIsPolar = false;
    3880             :     bool bIsNorthPolar = false;
    3881             : 
    3882          48 :     void clear()
    3883             :     {
    3884          48 :         poSourceCRS = nullptr;
    3885          48 :         poTargetCRS = nullptr;
    3886          48 :         poCT = nullptr;
    3887          48 :         poRevCT.reset();
    3888          48 :         bIsPolar = false;
    3889          48 :         bIsNorthPolar = false;
    3890          48 :     }
    3891             : };
    3892             : 
    3893             : /************************************************************************/
    3894             : /*                     TransformWithOptionsCache()                      */
    3895             : /************************************************************************/
    3896             : 
    3897        1114 : OGRGeometryFactory::TransformWithOptionsCache::TransformWithOptionsCache()
    3898        1114 :     : d(new Private())
    3899             : {
    3900        1114 : }
    3901             : 
    3902             : /************************************************************************/
    3903             : /*                     ~TransformWithOptionsCache()                      */
    3904             : /************************************************************************/
    3905             : 
    3906        1114 : OGRGeometryFactory::TransformWithOptionsCache::~TransformWithOptionsCache()
    3907             : {
    3908        1114 : }
    3909             : 
    3910             : /************************************************************************/
    3911             : /*              isTransformWithOptionsRegularTransform()                */
    3912             : /************************************************************************/
    3913             : 
    3914             : //! @cond Doxygen_Suppress
    3915             : /*static */
    3916          61 : bool OGRGeometryFactory::isTransformWithOptionsRegularTransform(
    3917             :     [[maybe_unused]] const OGRSpatialReference *poSourceCRS,
    3918             :     [[maybe_unused]] const OGRSpatialReference *poTargetCRS,
    3919             :     CSLConstList papszOptions)
    3920             : {
    3921          61 :     if (papszOptions)
    3922          11 :         return false;
    3923             : 
    3924             : #ifdef HAVE_GEOS
    3925          50 :     if (poSourceCRS && poTargetCRS && poSourceCRS->IsProjected() &&
    3926          37 :         poTargetCRS->IsGeographic() &&
    3927         131 :         poTargetCRS->GetAxisMappingStrategy() == OAMS_TRADITIONAL_GIS_ORDER &&
    3928             :         // check that angular units is degree
    3929          31 :         std::fabs(poTargetCRS->GetAngularUnits(nullptr) -
    3930          31 :                   CPLAtof(SRS_UA_DEGREE_CONV)) <=
    3931          31 :             1e-8 * CPLAtof(SRS_UA_DEGREE_CONV))
    3932             :     {
    3933          31 :         double dfWestLong = 0.0;
    3934          31 :         double dfSouthLat = 0.0;
    3935          31 :         double dfEastLong = 0.0;
    3936          31 :         double dfNorthLat = 0.0;
    3937          31 :         if (poSourceCRS->GetAreaOfUse(&dfWestLong, &dfSouthLat, &dfEastLong,
    3938          59 :                                       &dfNorthLat, nullptr) &&
    3939          28 :             !(dfSouthLat == -90.0 || dfNorthLat == 90.0 ||
    3940          28 :               dfWestLong == -180.0 || dfEastLong == 180.0 ||
    3941          21 :               dfWestLong > dfEastLong))
    3942             :         {
    3943             :             // Not a global geographic CRS
    3944          21 :             return true;
    3945             :         }
    3946          10 :         return false;
    3947             :     }
    3948             : #endif
    3949             : 
    3950          19 :     return true;
    3951             : }
    3952             : 
    3953             : //! @endcond
    3954             : 
    3955             : /************************************************************************/
    3956             : /*                       transformWithOptions()                         */
    3957             : /************************************************************************/
    3958             : 
    3959             : /** Transform a geometry.
    3960             :  *
    3961             :  * This is an enhanced version of OGRGeometry::Transform().
    3962             :  *
    3963             :  * When reprojecting geometries from a Polar Stereographic projection or a
    3964             :  * projection naturally crossing the antimeridian (like UTM Zone 60) to a
    3965             :  * geographic CRS, it will cut geometries along the antimeridian. So a
    3966             :  * LineString might be returned as a MultiLineString.
    3967             :  *
    3968             :  * The WRAPDATELINE=YES option might be specified for circumstances to correct
    3969             :  * geometries that incorrectly go from a longitude on a side of the antimeridian
    3970             :  * to the other side, like a LINESTRING(-179 0,179 0) will be transformed to
    3971             :  * a MULTILINESTRING ((-179 0,-180 0),(180 0,179 0)). For that use case, hCT
    3972             :  * might be NULL.
    3973             :  *
    3974             :  * Supported options in papszOptions are:
    3975             :  * <ul>
    3976             :  * <li>WRAPDATELINE=YES</li>
    3977             :  * <li>DATELINEOFFSET=longitude_gap_in_degree. Defaults to 10.</li>
    3978             :  * </ul>
    3979             :  *
    3980             :  * This is the same as the C function OGR_GeomTransformer_Transform().
    3981             :  *
    3982             :  * @param poSrcGeom source geometry
    3983             :  * @param poCT coordinate transformation object, or NULL.
    3984             :  * @param papszOptions NULL terminated list of options, or NULL.
    3985             :  * @param cache Cache. May increase performance if persisted between invocations
    3986             :  * @return (new) transformed geometry.
    3987             :  */
    3988         183 : OGRGeometry *OGRGeometryFactory::transformWithOptions(
    3989             :     const OGRGeometry *poSrcGeom, OGRCoordinateTransformation *poCT,
    3990             :     char **papszOptions, CPL_UNUSED const TransformWithOptionsCache &cache)
    3991             : {
    3992         366 :     auto poDstGeom = std::unique_ptr<OGRGeometry>(poSrcGeom->clone());
    3993         183 :     if (poCT)
    3994             :     {
    3995             : #ifdef HAVE_GEOS
    3996         148 :         bool bNeedPostCorrection = false;
    3997         148 :         const auto poSourceCRS = poCT->GetSourceCS();
    3998         148 :         const auto poTargetCRS = poCT->GetTargetCS();
    3999         148 :         const auto eSrcGeomType = wkbFlatten(poSrcGeom->getGeometryType());
    4000             :         // Check if we are transforming from projected coordinates to
    4001             :         // geographic coordinates, with a chance that there might be polar or
    4002             :         // anti-meridian discontinuities. If so, create the inverse transform.
    4003         276 :         if (eSrcGeomType != wkbPoint && eSrcGeomType != wkbMultiPoint &&
    4004         128 :             (poSourceCRS != cache.d->poSourceCRS ||
    4005          80 :              poTargetCRS != cache.d->poTargetCRS || poCT != cache.d->poCT))
    4006             :         {
    4007          48 :             cache.d->clear();
    4008          48 :             cache.d->poSourceCRS = poSourceCRS;
    4009          48 :             cache.d->poTargetCRS = poTargetCRS;
    4010          48 :             cache.d->poCT = poCT;
    4011          96 :             if (poSourceCRS && poTargetCRS &&
    4012          48 :                 !isTransformWithOptionsRegularTransform(
    4013             :                     poSourceCRS, poTargetCRS, papszOptions))
    4014             :             {
    4015          20 :                 cache.d->poRevCT.reset(OGRCreateCoordinateTransformation(
    4016             :                     poTargetCRS, poSourceCRS));
    4017          20 :                 cache.d->bIsNorthPolar = false;
    4018          20 :                 cache.d->bIsPolar = false;
    4019          20 :                 cache.d->poRevCT.reset(poCT->GetInverse());
    4020          60 :                 if (cache.d->poRevCT &&
    4021          20 :                     IsPolarToGeographic(poCT, cache.d->poRevCT.get(),
    4022          40 :                                         cache.d->bIsNorthPolar))
    4023             :                 {
    4024           5 :                     cache.d->bIsPolar = true;
    4025             :                 }
    4026             :             }
    4027             :         }
    4028             : 
    4029         148 :         if (auto poRevCT = cache.d->poRevCT.get())
    4030             :         {
    4031          23 :             if (cache.d->bIsPolar)
    4032             :             {
    4033          12 :                 poDstGeom = TransformBeforePolarToGeographic(
    4034          12 :                     poRevCT, cache.d->bIsNorthPolar, std::move(poDstGeom),
    4035           6 :                     bNeedPostCorrection);
    4036             :             }
    4037          17 :             else if (IsAntimeridianProjToGeographic(poCT, poRevCT,
    4038             :                                                     poDstGeom.get()))
    4039             :             {
    4040          30 :                 poDstGeom = TransformBeforeAntimeridianToGeographic(
    4041          30 :                     poCT, poRevCT, std::move(poDstGeom), bNeedPostCorrection);
    4042             :             }
    4043             :         }
    4044             : #endif
    4045         148 :         OGRErr eErr = poDstGeom->transform(poCT);
    4046         148 :         if (eErr != OGRERR_NONE)
    4047             :         {
    4048           0 :             return nullptr;
    4049             :         }
    4050             : #ifdef HAVE_GEOS
    4051         148 :         if (bNeedPostCorrection)
    4052             :         {
    4053          16 :             SnapCoordsCloseToLatLongBounds(poDstGeom.get());
    4054             :         }
    4055             : #endif
    4056             :     }
    4057             : 
    4058         183 :     if (CPLTestBool(CSLFetchNameValueDef(papszOptions, "WRAPDATELINE", "NO")))
    4059             :     {
    4060         101 :         if (poDstGeom->getSpatialReference() &&
    4061          49 :             !poDstGeom->getSpatialReference()->IsGeographic())
    4062             :         {
    4063           0 :             CPLErrorOnce(
    4064             :                 CE_Warning, CPLE_AppDefined,
    4065             :                 "WRAPDATELINE is without effect when reprojecting to a "
    4066             :                 "non-geographic CRS");
    4067           0 :             return poDstGeom.release();
    4068             :         }
    4069             :         // TODO and we should probably also test that the axis order + data axis
    4070             :         // mapping is long-lat...
    4071             :         const OGRwkbGeometryType eType =
    4072          52 :             wkbFlatten(poDstGeom->getGeometryType());
    4073          52 :         if (eType == wkbPoint)
    4074             :         {
    4075           9 :             OGRPoint *poDstPoint = poDstGeom->toPoint();
    4076           9 :             WrapPointDateLine(poDstPoint);
    4077             :         }
    4078          43 :         else if (eType == wkbMultiPoint)
    4079             :         {
    4080           5 :             for (auto *poDstPoint : *(poDstGeom->toMultiPoint()))
    4081             :             {
    4082           4 :                 WrapPointDateLine(poDstPoint);
    4083             :             }
    4084             :         }
    4085             :         else
    4086             :         {
    4087          42 :             OGREnvelope sEnvelope;
    4088          42 :             poDstGeom->getEnvelope(&sEnvelope);
    4089          42 :             if (sEnvelope.MinX >= -360.0 && sEnvelope.MaxX <= -180.0)
    4090           2 :                 AddOffsetToLon(poDstGeom.get(), 360.0);
    4091          40 :             else if (sEnvelope.MinX >= 180.0 && sEnvelope.MaxX <= 360.0)
    4092           2 :                 AddOffsetToLon(poDstGeom.get(), -360.0);
    4093             :             else
    4094             :             {
    4095             :                 OGRwkbGeometryType eNewType;
    4096          38 :                 if (eType == wkbPolygon || eType == wkbMultiPolygon)
    4097          27 :                     eNewType = wkbMultiPolygon;
    4098          11 :                 else if (eType == wkbLineString || eType == wkbMultiLineString)
    4099          10 :                     eNewType = wkbMultiLineString;
    4100             :                 else
    4101           1 :                     eNewType = wkbGeometryCollection;
    4102             : 
    4103             :                 auto poMulti = std::unique_ptr<OGRGeometryCollection>(
    4104          76 :                     createGeometry(eNewType)->toGeometryCollection());
    4105             : 
    4106          38 :                 double dfDateLineOffset = CPLAtofM(
    4107             :                     CSLFetchNameValueDef(papszOptions, "DATELINEOFFSET", "10"));
    4108          38 :                 if (dfDateLineOffset <= 0.0 || dfDateLineOffset >= 360.0)
    4109           0 :                     dfDateLineOffset = 10.0;
    4110             : 
    4111          38 :                 CutGeometryOnDateLineAndAddToMulti(
    4112          38 :                     poMulti.get(), poDstGeom.get(), dfDateLineOffset);
    4113             : 
    4114          38 :                 if (poMulti->getNumGeometries() == 0)
    4115             :                 {
    4116             :                     // do nothing
    4117             :                 }
    4118          39 :                 else if (poMulti->getNumGeometries() == 1 &&
    4119           1 :                          (eType == wkbPolygon || eType == wkbLineString))
    4120             :                 {
    4121          12 :                     poDstGeom = poMulti->stealGeometry(0);
    4122             :                 }
    4123             :                 else
    4124             :                 {
    4125          26 :                     poDstGeom = std::move(poMulti);
    4126             :                 }
    4127             :             }
    4128             :         }
    4129             :     }
    4130             : 
    4131         183 :     return poDstGeom.release();
    4132             : }
    4133             : 
    4134             : /************************************************************************/
    4135             : /*                         OGRGeomTransformer()                         */
    4136             : /************************************************************************/
    4137             : 
    4138             : struct OGRGeomTransformer
    4139             : {
    4140             :     std::unique_ptr<OGRCoordinateTransformation> poCT{};
    4141             :     OGRGeometryFactory::TransformWithOptionsCache cache{};
    4142             :     CPLStringList aosOptions{};
    4143             : 
    4144           6 :     OGRGeomTransformer() = default;
    4145             :     OGRGeomTransformer(const OGRGeomTransformer &) = delete;
    4146             :     OGRGeomTransformer &operator=(const OGRGeomTransformer &) = delete;
    4147             : };
    4148             : 
    4149             : /************************************************************************/
    4150             : /*                     OGR_GeomTransformer_Create()                     */
    4151             : /************************************************************************/
    4152             : 
    4153             : /** Create a geometry transformer.
    4154             :  *
    4155             :  * This is a enhanced version of OGR_G_Transform().
    4156             :  *
    4157             :  * When reprojecting geometries from a Polar Stereographic projection or a
    4158             :  * projection naturally crossing the antimeridian (like UTM Zone 60) to a
    4159             :  * geographic CRS, it will cut geometries along the antimeridian. So a
    4160             :  * LineString might be returned as a MultiLineString.
    4161             :  *
    4162             :  * The WRAPDATELINE=YES option might be specified for circumstances to correct
    4163             :  * geometries that incorrectly go from a longitude on a side of the antimeridian
    4164             :  * to the other side, like a LINESTRING(-179 0,179 0) will be transformed to
    4165             :  * a MULTILINESTRING ((-179 0,-180 0),(180 0,179 0)). For that use case, hCT
    4166             :  * might be NULL.
    4167             :  *
    4168             :  * Supported options in papszOptions are:
    4169             :  * <ul>
    4170             :  * <li>WRAPDATELINE=YES</li>
    4171             :  * <li>DATELINEOFFSET=longitude_gap_in_degree. Defaults to 10.</li>
    4172             :  * </ul>
    4173             :  *
    4174             :  * This is the same as the C++ method OGRGeometryFactory::transformWithOptions().
    4175             : 
    4176             :  * @param hCT Coordinate transformation object (will be cloned) or NULL.
    4177             :  * @param papszOptions NULL terminated list of options, or NULL.
    4178             :  * @return transformer object to free with OGR_GeomTransformer_Destroy()
    4179             :  * @since GDAL 3.1
    4180             :  */
    4181           6 : OGRGeomTransformerH OGR_GeomTransformer_Create(OGRCoordinateTransformationH hCT,
    4182             :                                                CSLConstList papszOptions)
    4183             : {
    4184           6 :     OGRGeomTransformer *transformer = new OGRGeomTransformer;
    4185           6 :     if (hCT)
    4186             :     {
    4187           3 :         transformer->poCT.reset(
    4188           3 :             OGRCoordinateTransformation::FromHandle(hCT)->Clone());
    4189             :     }
    4190           6 :     transformer->aosOptions.Assign(CSLDuplicate(papszOptions));
    4191           6 :     return transformer;
    4192             : }
    4193             : 
    4194             : /************************************************************************/
    4195             : /*                     OGR_GeomTransformer_Transform()                  */
    4196             : /************************************************************************/
    4197             : 
    4198             : /** Transforms a geometry.
    4199             :  *
    4200             :  * @param hTransformer transformer object.
    4201             :  * @param hGeom Source geometry.
    4202             :  * @return a new geometry (or NULL) to destroy with OGR_G_DestroyGeometry()
    4203             :  * @since GDAL 3.1
    4204             :  */
    4205           6 : OGRGeometryH OGR_GeomTransformer_Transform(OGRGeomTransformerH hTransformer,
    4206             :                                            OGRGeometryH hGeom)
    4207             : {
    4208           6 :     VALIDATE_POINTER1(hTransformer, "OGR_GeomTransformer_Transform", nullptr);
    4209           6 :     VALIDATE_POINTER1(hGeom, "OGR_GeomTransformer_Transform", nullptr);
    4210             : 
    4211          12 :     return OGRGeometry::ToHandle(OGRGeometryFactory::transformWithOptions(
    4212           6 :         OGRGeometry::FromHandle(hGeom), hTransformer->poCT.get(),
    4213          12 :         hTransformer->aosOptions.List(), hTransformer->cache));
    4214             : }
    4215             : 
    4216             : /************************************************************************/
    4217             : /*                      OGR_GeomTransformer_Destroy()                   */
    4218             : /************************************************************************/
    4219             : 
    4220             : /** Destroy a geometry transformer allocated with OGR_GeomTransformer_Create()
    4221             :  *
    4222             :  * @param hTransformer transformer object.
    4223             :  * @since GDAL 3.1
    4224             :  */
    4225           6 : void OGR_GeomTransformer_Destroy(OGRGeomTransformerH hTransformer)
    4226             : {
    4227           6 :     delete hTransformer;
    4228           6 : }
    4229             : 
    4230             : /************************************************************************/
    4231             : /*                OGRGeometryFactory::GetDefaultArcStepSize()           */
    4232             : /************************************************************************/
    4233             : 
    4234             : /** Return the default value of the angular step used when stroking curves
    4235             :  * as lines. Defaults to 4 degrees.
    4236             :  * Can be modified by setting the OGR_ARC_STEPSIZE configuration option.
    4237             :  * Valid values are in [1e-2, 180] degree range.
    4238             :  * @since 3.11
    4239             :  */
    4240             : 
    4241             : /* static */
    4242        4370 : double OGRGeometryFactory::GetDefaultArcStepSize()
    4243             : {
    4244        4370 :     const double dfVal = CPLAtofM(CPLGetConfigOption("OGR_ARC_STEPSIZE", "4"));
    4245        4370 :     constexpr double MIN_VAL = 1e-2;
    4246        4370 :     if (dfVal < MIN_VAL)
    4247             :     {
    4248           1 :         CPLErrorOnce(CE_Warning, CPLE_AppDefined,
    4249             :                      "Too small value for OGR_ARC_STEPSIZE. Clamping it to %f",
    4250             :                      MIN_VAL);
    4251           1 :         return MIN_VAL;
    4252             :     }
    4253        4369 :     constexpr double MAX_VAL = 180;
    4254        4369 :     if (dfVal > MAX_VAL)
    4255             :     {
    4256           1 :         CPLErrorOnce(CE_Warning, CPLE_AppDefined,
    4257             :                      "Too large value for OGR_ARC_STEPSIZE. Clamping it to %f",
    4258             :                      MAX_VAL);
    4259           1 :         return MAX_VAL;
    4260             :     }
    4261        4368 :     return dfVal;
    4262             : }
    4263             : 
    4264             : /************************************************************************/
    4265             : /*                              DISTANCE()                              */
    4266             : /************************************************************************/
    4267             : 
    4268      310523 : static inline double DISTANCE(double x1, double y1, double x2, double y2)
    4269             : {
    4270      310523 :     return sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
    4271             : }
    4272             : 
    4273             : /************************************************************************/
    4274             : /*                        approximateArcAngles()                        */
    4275             : /************************************************************************/
    4276             : 
    4277             : /**
    4278             :  * Stroke arc to linestring.
    4279             :  *
    4280             :  * Stroke an arc of a circle to a linestring based on a center
    4281             :  * point, radius, start angle and end angle, all angles in degrees.
    4282             :  *
    4283             :  * If the dfMaxAngleStepSizeDegrees is zero, then a default value will be
    4284             :  * used.  This is currently 4 degrees unless the user has overridden the
    4285             :  * value with the OGR_ARC_STEPSIZE configuration variable.
    4286             :  *
    4287             :  * If the OGR_ARC_MAX_GAP configuration variable is set, the straight-line
    4288             :  * distance between adjacent pairs of interpolated points will be limited to
    4289             :  * the specified distance. If the distance between a pair of points exceeds
    4290             :  * this maximum, additional points are interpolated between the two points.
    4291             :  *
    4292             :  * @see CPLSetConfigOption()
    4293             :  *
    4294             :  * @param dfCenterX center X
    4295             :  * @param dfCenterY center Y
    4296             :  * @param dfZ center Z
    4297             :  * @param dfPrimaryRadius X radius of ellipse.
    4298             :  * @param dfSecondaryRadius Y radius of ellipse.
    4299             :  * @param dfRotation rotation of the ellipse clockwise.
    4300             :  * @param dfStartAngle angle to first point on arc (clockwise of X-positive)
    4301             :  * @param dfEndAngle angle to last point on arc (clockwise of X-positive)
    4302             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    4303             :  * arc, zero to use the default setting.
    4304             :  * @param bUseMaxGap Optional: whether to honor OGR_ARC_MAX_GAP.
    4305             :  *
    4306             :  * @return OGRLineString geometry representing an approximation of the arc.
    4307             :  *
    4308             :  * @since OGR 1.8.0
    4309             :  */
    4310             : 
    4311         118 : OGRGeometry *OGRGeometryFactory::approximateArcAngles(
    4312             :     double dfCenterX, double dfCenterY, double dfZ, double dfPrimaryRadius,
    4313             :     double dfSecondaryRadius, double dfRotation, double dfStartAngle,
    4314             :     double dfEndAngle, double dfMaxAngleStepSizeDegrees,
    4315             :     const bool bUseMaxGap /* = false */)
    4316             : 
    4317             : {
    4318         118 :     OGRLineString *poLine = new OGRLineString();
    4319         118 :     const double dfRotationRadians = dfRotation * M_PI / 180.0;
    4320             : 
    4321             :     // Support default arc step setting.
    4322         118 :     if (dfMaxAngleStepSizeDegrees < 1e-6)
    4323             :     {
    4324         117 :         dfMaxAngleStepSizeDegrees = OGRGeometryFactory::GetDefaultArcStepSize();
    4325             :     }
    4326             : 
    4327             :     // Determine maximum interpolation gap. This is the largest straight-line
    4328             :     // distance allowed between pairs of interpolated points. Default zero,
    4329             :     // meaning no gap.
    4330             :     // coverity[tainted_data]
    4331             :     const double dfMaxInterpolationGap =
    4332         118 :         bUseMaxGap ? CPLAtofM(CPLGetConfigOption("OGR_ARC_MAX_GAP", "0")) : 0.0;
    4333             : 
    4334             :     // Is this a full circle?
    4335         118 :     const bool bIsFullCircle = fabs(dfEndAngle - dfStartAngle) == 360.0;
    4336             : 
    4337             :     // Switch direction.
    4338         118 :     dfStartAngle *= -1;
    4339         118 :     dfEndAngle *= -1;
    4340             : 
    4341             :     // Figure out the number of slices to make this into.
    4342             :     int nVertexCount =
    4343         236 :         std::max(2, static_cast<int>(ceil(fabs(dfEndAngle - dfStartAngle) /
    4344         118 :                                           dfMaxAngleStepSizeDegrees) +
    4345         118 :                                      1));
    4346         118 :     const double dfSlice = (dfEndAngle - dfStartAngle) / (nVertexCount - 1);
    4347             : 
    4348             :     // If it is a full circle we will work out the last point separately.
    4349         118 :     if (bIsFullCircle)
    4350             :     {
    4351          52 :         nVertexCount--;
    4352             :     }
    4353             : 
    4354             :     /* -------------------------------------------------------------------- */
    4355             :     /*      Compute the interpolated points.                                */
    4356             :     /* -------------------------------------------------------------------- */
    4357         118 :     double dfLastX = 0.0;
    4358         118 :     double dfLastY = 0.0;
    4359         118 :     int nTotalAddPoints = 0;
    4360        7071 :     for (int iPoint = 0; iPoint < nVertexCount; iPoint++)
    4361             :     {
    4362        6953 :         const double dfAngleOnEllipse =
    4363        6953 :             (dfStartAngle + iPoint * dfSlice) * M_PI / 180.0;
    4364             : 
    4365             :         // Compute position on the unrotated ellipse.
    4366        6953 :         const double dfEllipseX = cos(dfAngleOnEllipse) * dfPrimaryRadius;
    4367        6953 :         const double dfEllipseY = sin(dfAngleOnEllipse) * dfSecondaryRadius;
    4368             : 
    4369             :         // Is this point too far from the previous point?
    4370        6953 :         if (iPoint && dfMaxInterpolationGap != 0.0)
    4371             :         {
    4372             :             const double dfDistFromLast =
    4373           1 :                 DISTANCE(dfLastX, dfLastY, dfEllipseX, dfEllipseY);
    4374             : 
    4375           1 :             if (dfDistFromLast > dfMaxInterpolationGap)
    4376             :             {
    4377           1 :                 const int nAddPoints =
    4378           1 :                     static_cast<int>(dfDistFromLast / dfMaxInterpolationGap);
    4379           1 :                 const double dfAddSlice = dfSlice / (nAddPoints + 1);
    4380             : 
    4381             :                 // Interpolate additional points
    4382           3 :                 for (int iAddPoint = 0; iAddPoint < nAddPoints; iAddPoint++)
    4383             :                 {
    4384           2 :                     const double dfAddAngleOnEllipse =
    4385           2 :                         (dfStartAngle + (iPoint - 1) * dfSlice +
    4386           2 :                          (iAddPoint + 1) * dfAddSlice) *
    4387             :                         (M_PI / 180.0);
    4388             : 
    4389           2 :                     poLine->setPoint(
    4390           2 :                         iPoint + nTotalAddPoints + iAddPoint,
    4391           2 :                         cos(dfAddAngleOnEllipse) * dfPrimaryRadius,
    4392           2 :                         sin(dfAddAngleOnEllipse) * dfSecondaryRadius, dfZ);
    4393             :                 }
    4394             : 
    4395           1 :                 nTotalAddPoints += nAddPoints;
    4396             :             }
    4397             :         }
    4398             : 
    4399        6953 :         poLine->setPoint(iPoint + nTotalAddPoints, dfEllipseX, dfEllipseY, dfZ);
    4400        6953 :         dfLastX = dfEllipseX;
    4401        6953 :         dfLastY = dfEllipseY;
    4402             :     }
    4403             : 
    4404             :     /* -------------------------------------------------------------------- */
    4405             :     /*      Rotate and translate the ellipse.                               */
    4406             :     /* -------------------------------------------------------------------- */
    4407         118 :     nVertexCount = poLine->getNumPoints();
    4408        7073 :     for (int iPoint = 0; iPoint < nVertexCount; iPoint++)
    4409             :     {
    4410        6955 :         const double dfEllipseX = poLine->getX(iPoint);
    4411        6955 :         const double dfEllipseY = poLine->getY(iPoint);
    4412             : 
    4413             :         // Rotate this position around the center of the ellipse.
    4414        6955 :         const double dfArcX = dfCenterX + dfEllipseX * cos(dfRotationRadians) +
    4415        6955 :                               dfEllipseY * sin(dfRotationRadians);
    4416        6955 :         const double dfArcY = dfCenterY - dfEllipseX * sin(dfRotationRadians) +
    4417        6955 :                               dfEllipseY * cos(dfRotationRadians);
    4418             : 
    4419        6955 :         poLine->setPoint(iPoint, dfArcX, dfArcY, dfZ);
    4420             :     }
    4421             : 
    4422             :     /* -------------------------------------------------------------------- */
    4423             :     /*      If we're asked to make a full circle, ensure the start and      */
    4424             :     /*      end points coincide exactly, in spite of any rounding error.    */
    4425             :     /* -------------------------------------------------------------------- */
    4426         118 :     if (bIsFullCircle)
    4427             :     {
    4428         104 :         OGRPoint oPoint;
    4429          52 :         poLine->getPoint(0, &oPoint);
    4430          52 :         poLine->setPoint(nVertexCount, &oPoint);
    4431             :     }
    4432             : 
    4433         118 :     return poLine;
    4434             : }
    4435             : 
    4436             : /************************************************************************/
    4437             : /*                     OGR_G_ApproximateArcAngles()                     */
    4438             : /************************************************************************/
    4439             : 
    4440             : /**
    4441             :  * Stroke arc to linestring.
    4442             :  *
    4443             :  * Stroke an arc of a circle to a linestring based on a center
    4444             :  * point, radius, start angle and end angle, all angles in degrees.
    4445             :  *
    4446             :  * If the dfMaxAngleStepSizeDegrees is zero, then a default value will be
    4447             :  * used.  This is currently 4 degrees unless the user has overridden the
    4448             :  * value with the OGR_ARC_STEPSIZE configuration variable.
    4449             :  *
    4450             :  * @see CPLSetConfigOption()
    4451             :  *
    4452             :  * @param dfCenterX center X
    4453             :  * @param dfCenterY center Y
    4454             :  * @param dfZ center Z
    4455             :  * @param dfPrimaryRadius X radius of ellipse.
    4456             :  * @param dfSecondaryRadius Y radius of ellipse.
    4457             :  * @param dfRotation rotation of the ellipse clockwise.
    4458             :  * @param dfStartAngle angle to first point on arc (clockwise of X-positive)
    4459             :  * @param dfEndAngle angle to last point on arc (clockwise of X-positive)
    4460             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    4461             :  * arc, zero to use the default setting.
    4462             :  *
    4463             :  * @return OGRLineString geometry representing an approximation of the arc.
    4464             :  *
    4465             :  * @since OGR 1.8.0
    4466             :  */
    4467             : 
    4468           1 : OGRGeometryH CPL_DLL OGR_G_ApproximateArcAngles(
    4469             :     double dfCenterX, double dfCenterY, double dfZ, double dfPrimaryRadius,
    4470             :     double dfSecondaryRadius, double dfRotation, double dfStartAngle,
    4471             :     double dfEndAngle, double dfMaxAngleStepSizeDegrees)
    4472             : 
    4473             : {
    4474           1 :     return OGRGeometry::ToHandle(OGRGeometryFactory::approximateArcAngles(
    4475             :         dfCenterX, dfCenterY, dfZ, dfPrimaryRadius, dfSecondaryRadius,
    4476           1 :         dfRotation, dfStartAngle, dfEndAngle, dfMaxAngleStepSizeDegrees));
    4477             : }
    4478             : 
    4479             : /************************************************************************/
    4480             : /*                           forceToLineString()                        */
    4481             : /************************************************************************/
    4482             : 
    4483             : /**
    4484             :  * \brief Convert to line string.
    4485             :  *
    4486             :  * Tries to force the provided geometry to be a line string.  This nominally
    4487             :  * effects a change on multilinestrings.
    4488             :  * In GDAL 2.0, for polygons or curvepolygons that have a single exterior ring,
    4489             :  * it will return the ring. For circular strings or compound curves, it will
    4490             :  * return an approximated line string.
    4491             :  *
    4492             :  * The passed in geometry is
    4493             :  * consumed and a new one returned (or potentially the same one).
    4494             :  *
    4495             :  * @param poGeom the input geometry - ownership is passed to the method.
    4496             :  * @param bOnlyInOrder flag that, if set to FALSE, indicate that the order of
    4497             :  *                     points in a linestring might be reversed if it enables
    4498             :  *                     to match the extremity of another linestring. If set
    4499             :  *                     to TRUE, the start of a linestring must match the end
    4500             :  *                     of another linestring.
    4501             :  * @return new geometry.
    4502             :  */
    4503             : 
    4504         177 : OGRGeometry *OGRGeometryFactory::forceToLineString(OGRGeometry *poGeom,
    4505             :                                                    bool bOnlyInOrder)
    4506             : 
    4507             : {
    4508         177 :     if (poGeom == nullptr)
    4509           2 :         return nullptr;
    4510             : 
    4511         175 :     const OGRwkbGeometryType eGeomType = wkbFlatten(poGeom->getGeometryType());
    4512             : 
    4513             :     /* -------------------------------------------------------------------- */
    4514             :     /*      If this is already a LineString, nothing to do                  */
    4515             :     /* -------------------------------------------------------------------- */
    4516         175 :     if (eGeomType == wkbLineString)
    4517             :     {
    4518             :         // Except if it is a linearring.
    4519          25 :         poGeom = OGRCurve::CastToLineString(poGeom->toCurve());
    4520             : 
    4521          25 :         return poGeom;
    4522             :     }
    4523             : 
    4524             :     /* -------------------------------------------------------------------- */
    4525             :     /*      If it is a polygon with a single ring, return it                 */
    4526             :     /* -------------------------------------------------------------------- */
    4527         150 :     if (eGeomType == wkbPolygon || eGeomType == wkbCurvePolygon)
    4528             :     {
    4529          30 :         OGRCurvePolygon *poCP = poGeom->toCurvePolygon();
    4530          30 :         if (poCP->getNumInteriorRings() == 0)
    4531             :         {
    4532          28 :             OGRCurve *poRing = poCP->stealExteriorRingCurve();
    4533          28 :             delete poCP;
    4534          28 :             return forceToLineString(poRing);
    4535             :         }
    4536           2 :         return poGeom;
    4537             :     }
    4538             : 
    4539             :     /* -------------------------------------------------------------------- */
    4540             :     /*      If it is a curve line, call CurveToLine()                        */
    4541             :     /* -------------------------------------------------------------------- */
    4542         120 :     if (eGeomType == wkbCircularString || eGeomType == wkbCompoundCurve)
    4543             :     {
    4544          69 :         OGRGeometry *poNewGeom = poGeom->toCurve()->CurveToLine();
    4545          69 :         delete poGeom;
    4546          69 :         return poNewGeom;
    4547             :     }
    4548             : 
    4549          51 :     if (eGeomType != wkbGeometryCollection && eGeomType != wkbMultiLineString &&
    4550             :         eGeomType != wkbMultiCurve)
    4551          20 :         return poGeom;
    4552             : 
    4553             :     // Build an aggregated linestring from all the linestrings in the container.
    4554          31 :     OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    4555          31 :     if (poGeom->hasCurveGeometry())
    4556             :     {
    4557             :         OGRGeometryCollection *poNewGC =
    4558           7 :             poGC->getLinearGeometry()->toGeometryCollection();
    4559           7 :         delete poGC;
    4560           7 :         poGC = poNewGC;
    4561             :     }
    4562             : 
    4563          31 :     if (poGC->getNumGeometries() == 0)
    4564             :     {
    4565           3 :         poGeom = new OGRLineString();
    4566           3 :         poGeom->assignSpatialReference(poGC->getSpatialReference());
    4567           3 :         delete poGC;
    4568           3 :         return poGeom;
    4569             :     }
    4570             : 
    4571          28 :     int iGeom0 = 0;
    4572          69 :     while (iGeom0 < poGC->getNumGeometries())
    4573             :     {
    4574          41 :         if (wkbFlatten(poGC->getGeometryRef(iGeom0)->getGeometryType()) !=
    4575             :             wkbLineString)
    4576             :         {
    4577          12 :             iGeom0++;
    4578          26 :             continue;
    4579             :         }
    4580             : 
    4581             :         OGRLineString *poLineString0 =
    4582          29 :             poGC->getGeometryRef(iGeom0)->toLineString();
    4583          29 :         if (poLineString0->getNumPoints() < 2)
    4584             :         {
    4585          14 :             iGeom0++;
    4586          14 :             continue;
    4587             :         }
    4588             : 
    4589          30 :         OGRPoint pointStart0;
    4590          15 :         poLineString0->StartPoint(&pointStart0);
    4591          30 :         OGRPoint pointEnd0;
    4592          15 :         poLineString0->EndPoint(&pointEnd0);
    4593             : 
    4594          15 :         int iGeom1 = iGeom0 + 1;  // Used after for.
    4595          17 :         for (; iGeom1 < poGC->getNumGeometries(); iGeom1++)
    4596             :         {
    4597           6 :             if (wkbFlatten(poGC->getGeometryRef(iGeom1)->getGeometryType()) !=
    4598             :                 wkbLineString)
    4599           1 :                 continue;
    4600             : 
    4601             :             OGRLineString *poLineString1 =
    4602           6 :                 poGC->getGeometryRef(iGeom1)->toLineString();
    4603           6 :             if (poLineString1->getNumPoints() < 2)
    4604           1 :                 continue;
    4605             : 
    4606           5 :             OGRPoint pointStart1;
    4607           5 :             poLineString1->StartPoint(&pointStart1);
    4608           5 :             OGRPoint pointEnd1;
    4609           5 :             poLineString1->EndPoint(&pointEnd1);
    4610             : 
    4611           5 :             if (!bOnlyInOrder && (pointEnd0.Equals(&pointEnd1) ||
    4612           0 :                                   pointStart0.Equals(&pointStart1)))
    4613             :             {
    4614           0 :                 poLineString1->reversePoints();
    4615           0 :                 poLineString1->StartPoint(&pointStart1);
    4616           0 :                 poLineString1->EndPoint(&pointEnd1);
    4617             :             }
    4618             : 
    4619           5 :             if (pointEnd0.Equals(&pointStart1))
    4620             :             {
    4621           4 :                 poLineString0->addSubLineString(poLineString1, 1);
    4622           4 :                 poGC->removeGeometry(iGeom1);
    4623           4 :                 break;
    4624             :             }
    4625             : 
    4626           1 :             if (pointEnd1.Equals(&pointStart0))
    4627             :             {
    4628           0 :                 poLineString1->addSubLineString(poLineString0, 1);
    4629           0 :                 poGC->removeGeometry(iGeom0);
    4630           0 :                 break;
    4631             :             }
    4632             :         }
    4633             : 
    4634          15 :         if (iGeom1 == poGC->getNumGeometries())
    4635             :         {
    4636          14 :             iGeom0++;
    4637             :         }
    4638             :     }
    4639             : 
    4640          28 :     if (poGC->getNumGeometries() == 1)
    4641             :     {
    4642          20 :         OGRGeometry *poSingleGeom = poGC->getGeometryRef(0);
    4643          20 :         poGC->removeGeometry(0, FALSE);
    4644          20 :         delete poGC;
    4645             : 
    4646          20 :         return poSingleGeom;
    4647             :     }
    4648             : 
    4649           8 :     return poGC;
    4650             : }
    4651             : 
    4652             : /************************************************************************/
    4653             : /*                      OGR_G_ForceToLineString()                       */
    4654             : /************************************************************************/
    4655             : 
    4656             : /**
    4657             :  * \brief Convert to line string.
    4658             :  *
    4659             :  * This function is the same as the C++ method
    4660             :  * OGRGeometryFactory::forceToLineString().
    4661             :  *
    4662             :  * @param hGeom handle to the geometry to convert (ownership surrendered).
    4663             :  * @return the converted geometry (ownership to caller).
    4664             :  *
    4665             :  * @since GDAL/OGR 1.10.0
    4666             :  */
    4667             : 
    4668          60 : OGRGeometryH OGR_G_ForceToLineString(OGRGeometryH hGeom)
    4669             : 
    4670             : {
    4671          60 :     return OGRGeometry::ToHandle(
    4672          60 :         OGRGeometryFactory::forceToLineString(OGRGeometry::FromHandle(hGeom)));
    4673             : }
    4674             : 
    4675             : /************************************************************************/
    4676             : /*                           forceTo()                                  */
    4677             : /************************************************************************/
    4678             : 
    4679             : /**
    4680             :  * \brief Convert to another geometry type
    4681             :  *
    4682             :  * Tries to force the provided geometry to the specified geometry type.
    4683             :  *
    4684             :  * It can promote 'single' geometry type to their corresponding collection type
    4685             :  * (see OGR_GT_GetCollection()) or the reverse. non-linear geometry type to
    4686             :  * their corresponding linear geometry type (see OGR_GT_GetLinear()), by
    4687             :  * possibly approximating circular arcs they may contain.  Regarding conversion
    4688             :  * from linear geometry types to curve geometry types, only "wrapping" will be
    4689             :  * done. No attempt to retrieve potential circular arcs by de-approximating
    4690             :  * stroking will be done. For that, OGRGeometry::getCurveGeometry() can be used.
    4691             :  *
    4692             :  * The passed in geometry is consumed and a new one returned (or potentially the
    4693             :  * same one).
    4694             :  *
    4695             :  * Starting with GDAL 3.9, this method honours the dimensionality of eTargetType.
    4696             :  *
    4697             :  * @param poGeom the input geometry - ownership is passed to the method.
    4698             :  * @param eTargetType target output geometry type.
    4699             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    4700             :  * @return new geometry, or nullptr in case of error.
    4701             :  *
    4702             :  * @since GDAL 2.0
    4703             :  */
    4704             : 
    4705        5034 : OGRGeometry *OGRGeometryFactory::forceTo(OGRGeometry *poGeom,
    4706             :                                          OGRwkbGeometryType eTargetType,
    4707             :                                          const char *const *papszOptions)
    4708             : {
    4709        5034 :     if (poGeom == nullptr)
    4710           0 :         return poGeom;
    4711             : 
    4712        5034 :     const OGRwkbGeometryType eTargetTypeFlat = wkbFlatten(eTargetType);
    4713        5034 :     if (eTargetTypeFlat == wkbUnknown)
    4714         268 :         return poGeom;
    4715             : 
    4716        4766 :     if (poGeom->IsEmpty())
    4717             :     {
    4718         277 :         OGRGeometry *poRet = createGeometry(eTargetType);
    4719         277 :         if (poRet)
    4720             :         {
    4721         277 :             poRet->assignSpatialReference(poGeom->getSpatialReference());
    4722         277 :             poRet->set3D(OGR_GT_HasZ(eTargetType));
    4723         277 :             poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4724             :         }
    4725         277 :         delete poGeom;
    4726         277 :         return poRet;
    4727             :     }
    4728             : 
    4729        4489 :     OGRwkbGeometryType eType = poGeom->getGeometryType();
    4730        4489 :     OGRwkbGeometryType eTypeFlat = wkbFlatten(eType);
    4731             : 
    4732        4489 :     if (eTargetTypeFlat != eTargetType && (eType == eTypeFlat))
    4733             :     {
    4734          66 :         auto poGeomNew = forceTo(poGeom, eTargetTypeFlat, papszOptions);
    4735          66 :         if (poGeomNew)
    4736             :         {
    4737          66 :             poGeomNew->set3D(OGR_GT_HasZ(eTargetType));
    4738          66 :             poGeomNew->setMeasured(OGR_GT_HasM(eTargetType));
    4739             :         }
    4740          66 :         return poGeomNew;
    4741             :     }
    4742             : 
    4743        4423 :     if (eTypeFlat == eTargetTypeFlat)
    4744             :     {
    4745         535 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    4746         535 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    4747         535 :         return poGeom;
    4748             :     }
    4749             : 
    4750        3888 :     eType = eTypeFlat;
    4751             : 
    4752        5609 :     if (OGR_GT_IsSubClassOf(eType, wkbPolyhedralSurface) &&
    4753        1721 :         (eTargetTypeFlat == wkbMultiSurface ||
    4754             :          eTargetTypeFlat == wkbGeometryCollection))
    4755             :     {
    4756         853 :         OGRwkbGeometryType eTempGeomType = wkbMultiPolygon;
    4757         853 :         if (OGR_GT_HasZ(eTargetType))
    4758         849 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4759         853 :         if (OGR_GT_HasM(eTargetType))
    4760           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4761         853 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4762         853 :                        eTargetType, papszOptions);
    4763             :     }
    4764             : 
    4765        3035 :     if (OGR_GT_IsSubClassOf(eType, wkbGeometryCollection) &&
    4766             :         eTargetTypeFlat == wkbGeometryCollection)
    4767             :     {
    4768         920 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    4769         920 :         auto poRet = OGRGeometryCollection::CastToGeometryCollection(poGC);
    4770         920 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    4771         920 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4772         920 :         return poRet;
    4773             :     }
    4774             : 
    4775        2115 :     if (eType == wkbTriangle && eTargetTypeFlat == wkbPolyhedralSurface)
    4776             :     {
    4777           1 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4778           1 :         poPS->assignSpatialReference(poGeom->getSpatialReference());
    4779           1 :         poPS->addGeometryDirectly(OGRTriangle::CastToPolygon(poGeom));
    4780           1 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4781           1 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4782           1 :         return poPS;
    4783             :     }
    4784        2114 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbPolyhedralSurface)
    4785             :     {
    4786           3 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4787           3 :         poPS->assignSpatialReference(poGeom->getSpatialReference());
    4788           3 :         poPS->addGeometryDirectly(poGeom);
    4789           3 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4790           3 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4791           3 :         return poPS;
    4792             :     }
    4793        2111 :     else if (eType == wkbMultiPolygon &&
    4794             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4795             :     {
    4796           2 :         OGRMultiPolygon *poMP = poGeom->toMultiPolygon();
    4797           2 :         OGRPolyhedralSurface *poPS = new OGRPolyhedralSurface();
    4798           4 :         for (int i = 0; i < poMP->getNumGeometries(); ++i)
    4799             :         {
    4800           2 :             poPS->addGeometry(poMP->getGeometryRef(i));
    4801             :         }
    4802           2 :         delete poGeom;
    4803           2 :         poPS->set3D(OGR_GT_HasZ(eTargetType));
    4804           2 :         poPS->setMeasured(OGR_GT_HasM(eTargetType));
    4805           2 :         return poPS;
    4806             :     }
    4807        2109 :     else if (eType == wkbTIN && eTargetTypeFlat == wkbPolyhedralSurface)
    4808             :     {
    4809           1 :         poGeom = OGRTriangulatedSurface::CastToPolyhedralSurface(
    4810             :             poGeom->toTriangulatedSurface());
    4811             :     }
    4812        2108 :     else if (eType == wkbCurvePolygon &&
    4813             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4814             :     {
    4815           1 :         OGRwkbGeometryType eTempGeomType = wkbPolygon;
    4816           1 :         if (OGR_GT_HasZ(eTargetType))
    4817           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4818           1 :         if (OGR_GT_HasM(eTargetType))
    4819           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4820           1 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4821           1 :                        eTargetType, papszOptions);
    4822             :     }
    4823        2107 :     else if (eType == wkbMultiSurface &&
    4824             :              eTargetTypeFlat == wkbPolyhedralSurface)
    4825             :     {
    4826           1 :         OGRwkbGeometryType eTempGeomType = wkbMultiPolygon;
    4827           1 :         if (OGR_GT_HasZ(eTargetType))
    4828           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4829           1 :         if (OGR_GT_HasM(eTargetType))
    4830           0 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4831           1 :         return forceTo(forceTo(poGeom, eTempGeomType, papszOptions),
    4832           1 :                        eTargetType, papszOptions);
    4833             :     }
    4834             : 
    4835        2106 :     else if (eType == wkbTriangle && eTargetTypeFlat == wkbTIN)
    4836             :     {
    4837           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    4838           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    4839           1 :         poTS->addGeometryDirectly(poGeom);
    4840           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    4841           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    4842           1 :         return poTS;
    4843             :     }
    4844        2105 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbTIN)
    4845             :     {
    4846           4 :         OGRPolygon *poPoly = poGeom->toPolygon();
    4847           4 :         OGRLinearRing *poLR = poPoly->getExteriorRing();
    4848           7 :         if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    4849           3 :               poPoly->getNumInteriorRings() == 0))
    4850             :         {
    4851           1 :             return poGeom;
    4852             :         }
    4853           3 :         OGRErr eErr = OGRERR_NONE;
    4854           3 :         OGRTriangle *poTriangle = new OGRTriangle(*poPoly, eErr);
    4855           3 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    4856           3 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    4857           3 :         poTS->addGeometryDirectly(poTriangle);
    4858           3 :         delete poGeom;
    4859           3 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    4860           3 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    4861           3 :         return poTS;
    4862             :     }
    4863        2101 :     else if (eType == wkbMultiPolygon && eTargetTypeFlat == wkbTIN)
    4864             :     {
    4865           1 :         OGRMultiPolygon *poMP = poGeom->toMultiPolygon();
    4866           2 :         for (const auto poPoly : *poMP)
    4867             :         {
    4868           1 :             const OGRLinearRing *poLR = poPoly->getExteriorRing();
    4869           2 :             if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    4870           1 :                   poPoly->getNumInteriorRings() == 0))
    4871             :             {
    4872           0 :                 return poGeom;
    4873             :             }
    4874             :         }
    4875           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    4876           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    4877           2 :         for (const auto poPoly : *poMP)
    4878             :         {
    4879           1 :             OGRErr eErr = OGRERR_NONE;
    4880           1 :             poTS->addGeometryDirectly(new OGRTriangle(*poPoly, eErr));
    4881             :         }
    4882           1 :         delete poGeom;
    4883           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    4884           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    4885           1 :         return poTS;
    4886             :     }
    4887        2100 :     else if (eType == wkbPolyhedralSurface && eTargetTypeFlat == wkbTIN)
    4888             :     {
    4889           2 :         OGRPolyhedralSurface *poPS = poGeom->toPolyhedralSurface();
    4890           3 :         for (const auto poPoly : *poPS)
    4891             :         {
    4892           2 :             const OGRLinearRing *poLR = poPoly->getExteriorRing();
    4893           3 :             if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    4894           1 :                   poPoly->getNumInteriorRings() == 0))
    4895             :             {
    4896           1 :                 poGeom->set3D(OGR_GT_HasZ(eTargetType));
    4897           1 :                 poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    4898           1 :                 return poGeom;
    4899             :             }
    4900             :         }
    4901           1 :         OGRTriangulatedSurface *poTS = new OGRTriangulatedSurface();
    4902           1 :         poTS->assignSpatialReference(poGeom->getSpatialReference());
    4903           2 :         for (const auto poPoly : *poPS)
    4904             :         {
    4905           1 :             OGRErr eErr = OGRERR_NONE;
    4906           1 :             poTS->addGeometryDirectly(new OGRTriangle(*poPoly, eErr));
    4907             :         }
    4908           1 :         delete poGeom;
    4909           1 :         poTS->set3D(OGR_GT_HasZ(eTargetType));
    4910           1 :         poTS->setMeasured(OGR_GT_HasM(eTargetType));
    4911           1 :         return poTS;
    4912             :     }
    4913             : 
    4914        2098 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbTriangle)
    4915             :     {
    4916           7 :         OGRPolygon *poPoly = poGeom->toPolygon();
    4917           7 :         OGRLinearRing *poLR = poPoly->getExteriorRing();
    4918          13 :         if (!(poLR != nullptr && poLR->getNumPoints() == 4 &&
    4919           6 :               poPoly->getNumInteriorRings() == 0))
    4920             :         {
    4921           1 :             poGeom->set3D(OGR_GT_HasZ(eTargetType));
    4922           1 :             poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    4923           1 :             return poGeom;
    4924             :         }
    4925           6 :         OGRErr eErr = OGRERR_NONE;
    4926           6 :         OGRTriangle *poTriangle = new OGRTriangle(*poPoly, eErr);
    4927           6 :         delete poGeom;
    4928           6 :         poTriangle->set3D(OGR_GT_HasZ(eTargetType));
    4929           6 :         poTriangle->setMeasured(OGR_GT_HasM(eTargetType));
    4930           6 :         return poTriangle;
    4931             :     }
    4932             : 
    4933        2092 :     if (eTargetTypeFlat == wkbTriangle || eTargetTypeFlat == wkbTIN ||
    4934             :         eTargetTypeFlat == wkbPolyhedralSurface)
    4935             :     {
    4936           9 :         OGRwkbGeometryType eTempGeomType = wkbPolygon;
    4937           9 :         if (OGR_GT_HasZ(eTargetType))
    4938           0 :             eTempGeomType = OGR_GT_SetZ(eTempGeomType);
    4939           9 :         if (OGR_GT_HasM(eTargetType))
    4940           1 :             eTempGeomType = OGR_GT_SetM(eTempGeomType);
    4941           9 :         OGRGeometry *poPoly = forceTo(poGeom, eTempGeomType, papszOptions);
    4942           9 :         if (poPoly == poGeom)
    4943           0 :             return poGeom;
    4944           9 :         return forceTo(poPoly, eTargetType, papszOptions);
    4945             :     }
    4946             : 
    4947        2083 :     if (eType == wkbTriangle && eTargetTypeFlat == wkbGeometryCollection)
    4948             :     {
    4949           1 :         OGRGeometryCollection *poGC = new OGRGeometryCollection();
    4950           1 :         poGC->assignSpatialReference(poGeom->getSpatialReference());
    4951           1 :         poGC->addGeometryDirectly(poGeom);
    4952           1 :         poGC->set3D(OGR_GT_HasZ(eTargetType));
    4953           1 :         poGC->setMeasured(OGR_GT_HasM(eTargetType));
    4954           1 :         return poGC;
    4955             :     }
    4956             : 
    4957             :     // Promote single to multi.
    4958        3878 :     if (!OGR_GT_IsSubClassOf(eType, wkbGeometryCollection) &&
    4959        1796 :         OGR_GT_IsSubClassOf(OGR_GT_GetCollection(eType), eTargetType))
    4960             :     {
    4961         497 :         OGRGeometry *poRet = createGeometry(eTargetType);
    4962         497 :         if (poRet == nullptr)
    4963             :         {
    4964           0 :             delete poGeom;
    4965           0 :             return nullptr;
    4966             :         }
    4967         497 :         poRet->assignSpatialReference(poGeom->getSpatialReference());
    4968         497 :         if (eType == wkbLineString)
    4969          43 :             poGeom = OGRCurve::CastToLineString(poGeom->toCurve());
    4970         497 :         poRet->toGeometryCollection()->addGeometryDirectly(poGeom);
    4971         497 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    4972         497 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4973         497 :         return poRet;
    4974             :     }
    4975             : 
    4976        1585 :     const bool bIsCurve = CPL_TO_BOOL(OGR_GT_IsCurve(eType));
    4977        1585 :     if (bIsCurve && eTargetTypeFlat == wkbCompoundCurve)
    4978             :     {
    4979          32 :         auto poRet = OGRCurve::CastToCompoundCurve(poGeom->toCurve());
    4980          32 :         if (poRet)
    4981             :         {
    4982          30 :             poRet->set3D(OGR_GT_HasZ(eTargetType));
    4983          30 :             poRet->setMeasured(OGR_GT_HasM(eTargetType));
    4984             :         }
    4985          32 :         return poRet;
    4986             :     }
    4987        1553 :     else if (bIsCurve && eTargetTypeFlat == wkbCurvePolygon)
    4988             :     {
    4989          26 :         OGRCurve *poCurve = poGeom->toCurve();
    4990          26 :         if (poCurve->getNumPoints() >= 3 && poCurve->get_IsClosed())
    4991             :         {
    4992          18 :             OGRCurvePolygon *poCP = new OGRCurvePolygon();
    4993          18 :             if (poCP->addRingDirectly(poCurve) == OGRERR_NONE)
    4994             :             {
    4995          18 :                 poCP->assignSpatialReference(poGeom->getSpatialReference());
    4996          18 :                 poCP->set3D(OGR_GT_HasZ(eTargetType));
    4997          18 :                 poCP->setMeasured(OGR_GT_HasM(eTargetType));
    4998          18 :                 return poCP;
    4999             :             }
    5000             :             else
    5001             :             {
    5002           0 :                 delete poCP;
    5003             :             }
    5004           8 :         }
    5005             :     }
    5006        1604 :     else if (eType == wkbLineString &&
    5007          77 :              OGR_GT_IsSubClassOf(eTargetType, wkbMultiSurface))
    5008             :     {
    5009          23 :         OGRGeometry *poTmp = forceTo(poGeom, wkbPolygon, papszOptions);
    5010          23 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5011          15 :             return forceTo(poTmp, eTargetType, papszOptions);
    5012             :     }
    5013        1504 :     else if (bIsCurve && eTargetTypeFlat == wkbMultiSurface)
    5014             :     {
    5015          10 :         OGRGeometry *poTmp = forceTo(poGeom, wkbCurvePolygon, papszOptions);
    5016          10 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5017          10 :             return forceTo(poTmp, eTargetType, papszOptions);
    5018             :     }
    5019        1494 :     else if (bIsCurve && eTargetTypeFlat == wkbMultiPolygon)
    5020             :     {
    5021          13 :         OGRGeometry *poTmp = forceTo(poGeom, wkbPolygon, papszOptions);
    5022          13 :         if (wkbFlatten(poTmp->getGeometryType()) != eType)
    5023          13 :             return forceTo(poTmp, eTargetType, papszOptions);
    5024             :     }
    5025        1481 :     else if (eType == wkbTriangle && eTargetTypeFlat == wkbCurvePolygon)
    5026             :     {
    5027           1 :         auto poRet = OGRSurface::CastToCurvePolygon(
    5028             :             OGRTriangle::CastToPolygon(poGeom)->toSurface());
    5029           1 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5030           1 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5031           1 :         return poRet;
    5032             :     }
    5033        1480 :     else if (eType == wkbPolygon && eTargetTypeFlat == wkbCurvePolygon)
    5034             :     {
    5035          19 :         auto poRet = OGRSurface::CastToCurvePolygon(poGeom->toPolygon());
    5036          19 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5037          19 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5038          19 :         return poRet;
    5039             :     }
    5040        1461 :     else if (OGR_GT_IsSubClassOf(eType, wkbCurvePolygon) &&
    5041             :              eTargetTypeFlat == wkbCompoundCurve)
    5042             :     {
    5043          15 :         OGRCurvePolygon *poPoly = poGeom->toCurvePolygon();
    5044          15 :         if (poPoly->getNumInteriorRings() == 0)
    5045             :         {
    5046          14 :             OGRCurve *poRet = poPoly->stealExteriorRingCurve();
    5047          14 :             if (poRet)
    5048          14 :                 poRet->assignSpatialReference(poGeom->getSpatialReference());
    5049          14 :             delete poPoly;
    5050          14 :             return forceTo(poRet, eTargetType, papszOptions);
    5051             :         }
    5052             :     }
    5053        1446 :     else if (eType == wkbMultiPolygon && eTargetTypeFlat == wkbMultiSurface)
    5054             :     {
    5055             :         auto poRet =
    5056          14 :             OGRMultiPolygon::CastToMultiSurface(poGeom->toMultiPolygon());
    5057          14 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5058          14 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5059          14 :         return poRet;
    5060             :     }
    5061        1432 :     else if (eType == wkbMultiLineString && eTargetTypeFlat == wkbMultiCurve)
    5062             :     {
    5063             :         auto poRet =
    5064           9 :             OGRMultiLineString::CastToMultiCurve(poGeom->toMultiLineString());
    5065           9 :         poRet->set3D(OGR_GT_HasZ(eTargetType));
    5066           9 :         poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5067           9 :         return poRet;
    5068             :     }
    5069        1423 :     else if (OGR_GT_IsSubClassOf(eType, wkbGeometryCollection))
    5070             :     {
    5071         263 :         OGRGeometryCollection *poGC = poGeom->toGeometryCollection();
    5072         263 :         if (poGC->getNumGeometries() == 1)
    5073             :         {
    5074         170 :             OGRGeometry *poSubGeom = poGC->getGeometryRef(0);
    5075         170 :             if (poSubGeom)
    5076             :             {
    5077         170 :                 poSubGeom->assignSpatialReference(
    5078         170 :                     poGeom->getSpatialReference());
    5079         170 :                 poGC->removeGeometry(0, FALSE);
    5080             :                 OGRGeometry *poRet =
    5081         170 :                     forceTo(poSubGeom->clone(), eTargetType, papszOptions);
    5082         170 :                 if (OGR_GT_IsSubClassOf(wkbFlatten(poRet->getGeometryType()),
    5083         170 :                                         eTargetType))
    5084             :                 {
    5085         135 :                     delete poGC;
    5086         135 :                     delete poSubGeom;
    5087         135 :                     return poRet;
    5088             :                 }
    5089          35 :                 poGC->addGeometryDirectly(poSubGeom);
    5090          35 :                 poRet->set3D(OGR_GT_HasZ(eTargetType));
    5091          35 :                 poRet->setMeasured(OGR_GT_HasM(eTargetType));
    5092          35 :                 delete poRet;
    5093             :             }
    5094             :         }
    5095             :     }
    5096        1274 :     else if (OGR_GT_IsSubClassOf(eType, wkbCurvePolygon) &&
    5097         114 :              (OGR_GT_IsSubClassOf(eTargetType, wkbMultiSurface) ||
    5098         102 :               OGR_GT_IsSubClassOf(eTargetType, wkbMultiCurve)))
    5099             :     {
    5100          43 :         OGRCurvePolygon *poCP = poGeom->toCurvePolygon();
    5101          43 :         if (poCP->getNumInteriorRings() == 0)
    5102             :         {
    5103          41 :             OGRCurve *poRing = poCP->getExteriorRingCurve();
    5104          41 :             poRing->assignSpatialReference(poGeom->getSpatialReference());
    5105          41 :             OGRwkbGeometryType eRingType = poRing->getGeometryType();
    5106          41 :             OGRGeometry *poRingDup = poRing->clone();
    5107          41 :             OGRGeometry *poRet = forceTo(poRingDup, eTargetType, papszOptions);
    5108          57 :             if (poRet->getGeometryType() != eRingType &&
    5109          16 :                 !(eTypeFlat == wkbPolygon &&
    5110             :                   eTargetTypeFlat == wkbMultiLineString))
    5111             :             {
    5112          29 :                 delete poCP;
    5113          29 :                 return poRet;
    5114             :             }
    5115             :             else
    5116             :             {
    5117          12 :                 delete poRet;
    5118             :             }
    5119             :         }
    5120             :     }
    5121             : 
    5122        1280 :     if (eTargetTypeFlat == wkbLineString)
    5123             :     {
    5124          89 :         poGeom = forceToLineString(poGeom);
    5125          89 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5126          89 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5127             :     }
    5128        1191 :     else if (eTargetTypeFlat == wkbPolygon)
    5129             :     {
    5130          99 :         poGeom = forceToPolygon(poGeom);
    5131          99 :         if (poGeom)
    5132             :         {
    5133          99 :             poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5134          99 :             poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5135             :         }
    5136             :     }
    5137        1092 :     else if (eTargetTypeFlat == wkbMultiPolygon)
    5138             :     {
    5139         912 :         poGeom = forceToMultiPolygon(poGeom);
    5140         912 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5141         912 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5142             :     }
    5143         180 :     else if (eTargetTypeFlat == wkbMultiLineString)
    5144             :     {
    5145          37 :         poGeom = forceToMultiLineString(poGeom);
    5146          37 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5147          37 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5148             :     }
    5149         143 :     else if (eTargetTypeFlat == wkbMultiPoint)
    5150             :     {
    5151          22 :         poGeom = forceToMultiPoint(poGeom);
    5152          22 :         poGeom->set3D(OGR_GT_HasZ(eTargetType));
    5153          22 :         poGeom->setMeasured(OGR_GT_HasM(eTargetType));
    5154             :     }
    5155             : 
    5156        1280 :     return poGeom;
    5157             : }
    5158             : 
    5159             : /************************************************************************/
    5160             : /*                          OGR_G_ForceTo()                             */
    5161             : /************************************************************************/
    5162             : 
    5163             : /**
    5164             :  * \brief Convert to another geometry type
    5165             :  *
    5166             :  * This function is the same as the C++ method OGRGeometryFactory::forceTo().
    5167             :  *
    5168             :  * @param hGeom the input geometry - ownership is passed to the method.
    5169             :  * @param eTargetType target output geometry type.
    5170             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    5171             :  * @return new geometry.
    5172             :  *
    5173             :  * @since GDAL 2.0
    5174             :  */
    5175             : 
    5176         848 : OGRGeometryH OGR_G_ForceTo(OGRGeometryH hGeom, OGRwkbGeometryType eTargetType,
    5177             :                            char **papszOptions)
    5178             : 
    5179             : {
    5180         848 :     return OGRGeometry::ToHandle(OGRGeometryFactory::forceTo(
    5181         848 :         OGRGeometry::FromHandle(hGeom), eTargetType, papszOptions));
    5182             : }
    5183             : 
    5184             : /************************************************************************/
    5185             : /*                         GetCurveParameters()                          */
    5186             : /************************************************************************/
    5187             : 
    5188             : /**
    5189             :  * \brief Returns the parameter of an arc circle.
    5190             :  *
    5191             :  * Angles are return in radians, with trigonometic convention (counter clock
    5192             :  * wise)
    5193             :  *
    5194             :  * @param x0 x of first point
    5195             :  * @param y0 y of first point
    5196             :  * @param x1 x of intermediate point
    5197             :  * @param y1 y of intermediate point
    5198             :  * @param x2 x of final point
    5199             :  * @param y2 y of final point
    5200             :  * @param R radius (output)
    5201             :  * @param cx x of arc center (output)
    5202             :  * @param cy y of arc center (output)
    5203             :  * @param alpha0 angle between center and first point, in radians (output)
    5204             :  * @param alpha1 angle between center and intermediate point, in radians
    5205             :  * (output)
    5206             :  * @param alpha2 angle between center and final point, in radians (output)
    5207             :  * @return TRUE if the points are not aligned and define an arc circle.
    5208             :  *
    5209             :  * @since GDAL 2.0
    5210             :  */
    5211             : 
    5212      186421 : int OGRGeometryFactory::GetCurveParameters(double x0, double y0, double x1,
    5213             :                                            double y1, double x2, double y2,
    5214             :                                            double &R, double &cx, double &cy,
    5215             :                                            double &alpha0, double &alpha1,
    5216             :                                            double &alpha2)
    5217             : {
    5218      559263 :     if (std::isnan(x0) || std::isnan(y0) || std::isnan(x1) || std::isnan(y1) ||
    5219      559263 :         std::isnan(x2) || std::isnan(y2))
    5220             :     {
    5221           0 :         return FALSE;
    5222             :     }
    5223             : 
    5224             :     // Circle.
    5225      186421 :     if (x0 == x2 && y0 == y2)
    5226             :     {
    5227         149 :         if (x0 != x1 || y0 != y1)
    5228             :         {
    5229         148 :             cx = (x0 + x1) / 2;
    5230         148 :             cy = (y0 + y1) / 2;
    5231         148 :             R = DISTANCE(cx, cy, x0, y0);
    5232             :             // Arbitrarily pick counter-clock-wise order (like PostGIS does).
    5233         148 :             alpha0 = atan2(y0 - cy, x0 - cx);
    5234         148 :             alpha1 = alpha0 + M_PI;
    5235         148 :             alpha2 = alpha0 + 2 * M_PI;
    5236         148 :             return TRUE;
    5237             :         }
    5238             :         else
    5239             :         {
    5240           1 :             return FALSE;
    5241             :         }
    5242             :     }
    5243             : 
    5244      186272 :     double dx01 = x1 - x0;
    5245      186272 :     double dy01 = y1 - y0;
    5246      186272 :     double dx12 = x2 - x1;
    5247      186272 :     double dy12 = y2 - y1;
    5248             : 
    5249             :     // Normalize above values so as to make sure we don't end up with
    5250             :     // computing a difference of too big values.
    5251      186272 :     double dfScale = fabs(dx01);
    5252      186272 :     if (fabs(dy01) > dfScale)
    5253       92730 :         dfScale = fabs(dy01);
    5254      186272 :     if (fabs(dx12) > dfScale)
    5255       46560 :         dfScale = fabs(dx12);
    5256      186272 :     if (fabs(dy12) > dfScale)
    5257       46454 :         dfScale = fabs(dy12);
    5258      186272 :     const double dfInvScale = 1.0 / dfScale;
    5259      186272 :     dx01 *= dfInvScale;
    5260      186272 :     dy01 *= dfInvScale;
    5261      186272 :     dx12 *= dfInvScale;
    5262      186272 :     dy12 *= dfInvScale;
    5263             : 
    5264      186272 :     const double det = dx01 * dy12 - dx12 * dy01;
    5265      186272 :     if (fabs(det) < 1.0e-8 || std::isnan(det))
    5266             :     {
    5267         130 :         return FALSE;
    5268             :     }
    5269      186142 :     const double x01_mid = (x0 + x1) * dfInvScale;
    5270      186142 :     const double x12_mid = (x1 + x2) * dfInvScale;
    5271      186142 :     const double y01_mid = (y0 + y1) * dfInvScale;
    5272      186142 :     const double y12_mid = (y1 + y2) * dfInvScale;
    5273      186142 :     const double c01 = dx01 * x01_mid + dy01 * y01_mid;
    5274      186142 :     const double c12 = dx12 * x12_mid + dy12 * y12_mid;
    5275      186142 :     cx = 0.5 * dfScale * (c01 * dy12 - c12 * dy01) / det;
    5276      186142 :     cy = 0.5 * dfScale * (-c01 * dx12 + c12 * dx01) / det;
    5277             : 
    5278      186142 :     alpha0 = atan2((y0 - cy) * dfInvScale, (x0 - cx) * dfInvScale);
    5279      186142 :     alpha1 = atan2((y1 - cy) * dfInvScale, (x1 - cx) * dfInvScale);
    5280      186142 :     alpha2 = atan2((y2 - cy) * dfInvScale, (x2 - cx) * dfInvScale);
    5281      186142 :     R = DISTANCE(cx, cy, x0, y0);
    5282             : 
    5283             :     // If det is negative, the orientation if clockwise.
    5284      186142 :     if (det < 0)
    5285             :     {
    5286       90788 :         if (alpha1 > alpha0)
    5287        1227 :             alpha1 -= 2 * M_PI;
    5288       90788 :         if (alpha2 > alpha1)
    5289        3189 :             alpha2 -= 2 * M_PI;
    5290             :     }
    5291             :     else
    5292             :     {
    5293       95354 :         if (alpha1 < alpha0)
    5294        1361 :             alpha1 += 2 * M_PI;
    5295       95354 :         if (alpha2 < alpha1)
    5296        3245 :             alpha2 += 2 * M_PI;
    5297             :     }
    5298             : 
    5299      186142 :     CPLAssert((alpha0 <= alpha1 && alpha1 <= alpha2) ||
    5300             :               (alpha0 >= alpha1 && alpha1 >= alpha2));
    5301             : 
    5302      186142 :     return TRUE;
    5303             : }
    5304             : 
    5305             : /************************************************************************/
    5306             : /*                      OGRGeometryFactoryStrokeArc()                   */
    5307             : /************************************************************************/
    5308             : 
    5309        4322 : static void OGRGeometryFactoryStrokeArc(OGRLineString *poLine, double cx,
    5310             :                                         double cy, double R, double z0,
    5311             :                                         double z1, int bHasZ, double alpha0,
    5312             :                                         double alpha1, double dfStep,
    5313             :                                         int bStealthConstraints)
    5314             : {
    5315        4322 :     const int nSign = dfStep > 0 ? 1 : -1;
    5316             : 
    5317             :     // Constant angle between all points, so as to not depend on winding order.
    5318        4322 :     const double dfNumSteps = fabs((alpha1 - alpha0) / dfStep) + 0.5;
    5319        4322 :     if (dfNumSteps >= std::numeric_limits<int>::max() ||
    5320        4322 :         dfNumSteps <= std::numeric_limits<int>::min() || std::isnan(dfNumSteps))
    5321             :     {
    5322           0 :         CPLError(CE_Warning, CPLE_AppDefined,
    5323             :                  "OGRGeometryFactoryStrokeArc: bogus steps: "
    5324             :                  "%lf %lf %lf %lf",
    5325             :                  alpha0, alpha1, dfStep, dfNumSteps);
    5326           0 :         return;
    5327             :     }
    5328             : 
    5329        4322 :     int nSteps = static_cast<int>(dfNumSteps);
    5330        4322 :     if (bStealthConstraints)
    5331             :     {
    5332             :         // We need at least 6 intermediate vertex, and if more additional
    5333             :         // multiples of 2.
    5334        4126 :         if (nSteps < 1 + 6)
    5335          96 :             nSteps = 1 + 6;
    5336             :         else
    5337        4030 :             nSteps = 1 + 6 + 2 * ((nSteps - (1 + 6) + (2 - 1)) / 2);
    5338             :     }
    5339         196 :     else if (nSteps < 4)
    5340             :     {
    5341         192 :         nSteps = 4;
    5342             :     }
    5343        4322 :     dfStep = nSign * fabs((alpha1 - alpha0) / nSteps);
    5344        4322 :     double alpha = alpha0 + dfStep;
    5345             : 
    5346      230138 :     for (; (alpha - alpha1) * nSign < -1e-8; alpha += dfStep)
    5347             :     {
    5348      225816 :         const double dfX = cx + R * cos(alpha);
    5349      225816 :         const double dfY = cy + R * sin(alpha);
    5350      225816 :         if (bHasZ)
    5351             :         {
    5352        9104 :             const double z =
    5353        9104 :                 z0 + (z1 - z0) * (alpha - alpha0) / (alpha1 - alpha0);
    5354        9104 :             poLine->addPoint(dfX, dfY, z);
    5355             :         }
    5356             :         else
    5357             :         {
    5358      216712 :             poLine->addPoint(dfX, dfY);
    5359             :         }
    5360             :     }
    5361             : }
    5362             : 
    5363             : /************************************************************************/
    5364             : /*                         OGRGF_SetHiddenValue()                       */
    5365             : /************************************************************************/
    5366             : 
    5367             : // TODO(schwehr): Cleanup these static constants.
    5368             : constexpr int HIDDEN_ALPHA_WIDTH = 32;
    5369             : constexpr GUInt32 HIDDEN_ALPHA_SCALE =
    5370             :     static_cast<GUInt32>((static_cast<GUIntBig>(1) << HIDDEN_ALPHA_WIDTH) - 2);
    5371             : constexpr int HIDDEN_ALPHA_HALF_WIDTH = (HIDDEN_ALPHA_WIDTH / 2);
    5372             : constexpr int HIDDEN_ALPHA_HALF_MASK = (1 << HIDDEN_ALPHA_HALF_WIDTH) - 1;
    5373             : 
    5374             : // Encode 16-bit nValue in the 8-lsb of dfX and dfY.
    5375             : 
    5376             : #ifdef CPL_LSB
    5377             : constexpr int DOUBLE_LSB_OFFSET = 0;
    5378             : #else
    5379             : constexpr int DOUBLE_LSB_OFFSET = 7;
    5380             : #endif
    5381             : 
    5382      225682 : static void OGRGF_SetHiddenValue(GUInt16 nValue, double &dfX, double &dfY)
    5383             : {
    5384      225682 :     GByte abyData[8] = {};
    5385             : 
    5386      225682 :     memcpy(abyData, &dfX, sizeof(double));
    5387      225682 :     abyData[DOUBLE_LSB_OFFSET] = static_cast<GByte>(nValue & 0xFF);
    5388      225682 :     memcpy(&dfX, abyData, sizeof(double));
    5389             : 
    5390      225682 :     memcpy(abyData, &dfY, sizeof(double));
    5391      225682 :     abyData[DOUBLE_LSB_OFFSET] = static_cast<GByte>(nValue >> 8);
    5392      225682 :     memcpy(&dfY, abyData, sizeof(double));
    5393      225682 : }
    5394             : 
    5395             : /************************************************************************/
    5396             : /*                         OGRGF_GetHiddenValue()                       */
    5397             : /************************************************************************/
    5398             : 
    5399             : // Decode 16-bit nValue from the 8-lsb of dfX and dfY.
    5400      181282 : static GUInt16 OGRGF_GetHiddenValue(double dfX, double dfY)
    5401             : {
    5402      181282 :     GByte abyData[8] = {};
    5403      181282 :     memcpy(abyData, &dfX, sizeof(double));
    5404      181282 :     GUInt16 nValue = abyData[DOUBLE_LSB_OFFSET];
    5405      181282 :     memcpy(abyData, &dfY, sizeof(double));
    5406      181282 :     nValue |= (abyData[DOUBLE_LSB_OFFSET] << 8);
    5407             : 
    5408      181282 :     return nValue;
    5409             : }
    5410             : 
    5411             : /************************************************************************/
    5412             : /*                     OGRGF_NeedSwithArcOrder()                        */
    5413             : /************************************************************************/
    5414             : 
    5415             : // We need to define a full ordering between starting point and ending point
    5416             : // whatever it is.
    5417        9490 : static bool OGRGF_NeedSwithArcOrder(double x0, double y0, double x2, double y2)
    5418             : {
    5419        9490 :     return x0 < x2 || (x0 == x2 && y0 < y2);
    5420             : }
    5421             : 
    5422             : /************************************************************************/
    5423             : /*                         curveToLineString()                          */
    5424             : /************************************************************************/
    5425             : 
    5426             : /* clang-format off */
    5427             : /**
    5428             :  * \brief Converts an arc circle into an approximate line string
    5429             :  *
    5430             :  * The arc circle is defined by a first point, an intermediate point and a
    5431             :  * final point.
    5432             :  *
    5433             :  * The provided dfMaxAngleStepSizeDegrees is a hint. The discretization
    5434             :  * algorithm may pick a slightly different value.
    5435             :  *
    5436             :  * So as to avoid gaps when rendering curve polygons that share common arcs,
    5437             :  * this method is guaranteed to return a line with reversed vertex if called
    5438             :  * with inverted first and final point, and identical intermediate point.
    5439             :  *
    5440             :  * @param x0 x of first point
    5441             :  * @param y0 y of first point
    5442             :  * @param z0 z of first point
    5443             :  * @param x1 x of intermediate point
    5444             :  * @param y1 y of intermediate point
    5445             :  * @param z1 z of intermediate point
    5446             :  * @param x2 x of final point
    5447             :  * @param y2 y of final point
    5448             :  * @param z2 z of final point
    5449             :  * @param bHasZ TRUE if z must be taken into account
    5450             :  * @param dfMaxAngleStepSizeDegrees the largest step in degrees along the
    5451             :  * arc, zero to use the default setting.
    5452             :  * @param papszOptions options as a null-terminated list of strings or NULL.
    5453             :  * Recognized options:
    5454             :  * <ul>
    5455             :  * <li>ADD_INTERMEDIATE_POINT=STEALTH/YES/NO (Default to STEALTH).
    5456             :  *         Determine if and how the intermediate point must be output in the
    5457             :  *         linestring.  If set to STEALTH, no explicit intermediate point is
    5458             :  *         added but its properties are encoded in low significant bits of
    5459             :  *         intermediate points and OGRGeometryFactory::curveFromLineString() can
    5460             :  *         decode them.  This is the best compromise for round-tripping in OGR
    5461             :  *         and better results with PostGIS
    5462             :  *         <a href="http://postgis.org/docs/ST_LineToCurve.html">ST_LineToCurve()</a>.
    5463             :  *         If set to YES, the intermediate point is explicitly added to the
    5464             :  *         linestring. If set to NO, the intermediate point is not explicitly
    5465             :  *         added.
    5466             :  * </li>
    5467             :  * </ul>
    5468             :  *
    5469             :  * @return the converted geometry (ownership to caller).
    5470             :  *
    5471             :  * @since GDAL 2.0
    5472             :  */
    5473             : /* clang-format on */
    5474             : 
    5475        6423 : OGRLineString *OGRGeometryFactory::curveToLineString(
    5476             :     double x0, double y0, double z0, double x1, double y1, double z1, double x2,
    5477             :     double y2, double z2, int bHasZ, double dfMaxAngleStepSizeDegrees,
    5478             :     const char *const *papszOptions)
    5479             : {
    5480             :     // So as to make sure the same curve followed in both direction results
    5481             :     // in perfectly(=binary identical) symmetrical points.
    5482        6423 :     if (OGRGF_NeedSwithArcOrder(x0, y0, x2, y2))
    5483             :     {
    5484             :         OGRLineString *poLS =
    5485        2198 :             curveToLineString(x2, y2, z2, x1, y1, z1, x0, y0, z0, bHasZ,
    5486             :                               dfMaxAngleStepSizeDegrees, papszOptions);
    5487        2198 :         poLS->reversePoints();
    5488        2198 :         return poLS;
    5489             :     }
    5490             : 
    5491        4225 :     double R = 0.0;
    5492        4225 :     double cx = 0.0;
    5493        4225 :     double cy = 0.0;
    5494        4225 :     double alpha0 = 0.0;
    5495        4225 :     double alpha1 = 0.0;
    5496        4225 :     double alpha2 = 0.0;
    5497             : 
    5498        4225 :     OGRLineString *poLine = new OGRLineString();
    5499        4225 :     bool bIsArc = true;
    5500        4225 :     if (!GetCurveParameters(x0, y0, x1, y1, x2, y2, R, cx, cy, alpha0, alpha1,
    5501             :                             alpha2))
    5502             :     {
    5503          96 :         bIsArc = false;
    5504          96 :         cx = 0.0;
    5505          96 :         cy = 0.0;
    5506          96 :         R = 0.0;
    5507          96 :         alpha0 = 0.0;
    5508          96 :         alpha1 = 0.0;
    5509          96 :         alpha2 = 0.0;
    5510             :     }
    5511             : 
    5512        4225 :     const int nSign = alpha1 >= alpha0 ? 1 : -1;
    5513             : 
    5514             :     // support default arc step setting.
    5515        4225 :     if (dfMaxAngleStepSizeDegrees < 1e-6)
    5516             :     {
    5517        4206 :         dfMaxAngleStepSizeDegrees = OGRGeometryFactory::GetDefaultArcStepSize();
    5518             :     }
    5519             : 
    5520        4225 :     double dfStep = dfMaxAngleStepSizeDegrees / 180 * M_PI;
    5521        4225 :     if (dfStep <= 0.01 / 180 * M_PI)
    5522             :     {
    5523           0 :         CPLDebug("OGR", "Too small arc step size: limiting to 0.01 degree.");
    5524           0 :         dfStep = 0.01 / 180 * M_PI;
    5525             :     }
    5526             : 
    5527        4225 :     dfStep *= nSign;
    5528             : 
    5529        4225 :     if (bHasZ)
    5530         252 :         poLine->addPoint(x0, y0, z0);
    5531             :     else
    5532        3973 :         poLine->addPoint(x0, y0);
    5533             : 
    5534        4225 :     bool bAddIntermediatePoint = false;
    5535        4225 :     bool bStealth = true;
    5536        4231 :     for (const char *const *papszIter = papszOptions; papszIter && *papszIter;
    5537             :          papszIter++)
    5538             :     {
    5539           6 :         char *pszKey = nullptr;
    5540           6 :         const char *pszValue = CPLParseNameValue(*papszIter, &pszKey);
    5541           6 :         if (pszKey != nullptr && EQUAL(pszKey, "ADD_INTERMEDIATE_POINT"))
    5542             :         {
    5543           4 :             if (EQUAL(pszValue, "YES") || EQUAL(pszValue, "TRUE") ||
    5544           3 :                 EQUAL(pszValue, "ON"))
    5545             :             {
    5546           1 :                 bAddIntermediatePoint = true;
    5547           1 :                 bStealth = false;
    5548             :             }
    5549           3 :             else if (EQUAL(pszValue, "NO") || EQUAL(pszValue, "FALSE") ||
    5550           1 :                      EQUAL(pszValue, "OFF"))
    5551             :             {
    5552           2 :                 bAddIntermediatePoint = false;
    5553           2 :                 bStealth = false;
    5554             :             }
    5555             :             else if (EQUAL(pszValue, "STEALTH"))
    5556             :             {
    5557             :                 // default.
    5558             :             }
    5559             :         }
    5560             :         else
    5561             :         {
    5562           2 :             CPLError(CE_Warning, CPLE_NotSupported, "Unsupported option: %s",
    5563             :                      *papszIter);
    5564             :         }
    5565           6 :         CPLFree(pszKey);
    5566             :     }
    5567             : 
    5568        4225 :     if (!bIsArc || bAddIntermediatePoint)
    5569             :     {
    5570          97 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z0, z1, bHasZ, alpha0,
    5571             :                                     alpha1, dfStep, FALSE);
    5572             : 
    5573          97 :         if (bHasZ)
    5574          25 :             poLine->addPoint(x1, y1, z1);
    5575             :         else
    5576          72 :             poLine->addPoint(x1, y1);
    5577             : 
    5578          97 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z1, z2, bHasZ, alpha1,
    5579             :                                     alpha2, dfStep, FALSE);
    5580             :     }
    5581             :     else
    5582             :     {
    5583        4128 :         OGRGeometryFactoryStrokeArc(poLine, cx, cy, R, z0, z2, bHasZ, alpha0,
    5584             :                                     alpha2, dfStep, bStealth);
    5585             : 
    5586        4128 :         if (bStealth && poLine->getNumPoints() > 6)
    5587             :         {
    5588             :             // 'Hide' the angle of the intermediate point in the 8
    5589             :             // low-significant bits of the x, y of the first 2 computed points
    5590             :             // (so 32 bits), then put 0xFF, and on the last couple points put
    5591             :             // again the angle but in reverse order, so that overall the
    5592             :             // low-significant bits of all the points are symmetrical w.r.t the
    5593             :             // mid-point.
    5594        4126 :             const double dfRatio = (alpha1 - alpha0) / (alpha2 - alpha0);
    5595        4126 :             double dfAlphaRatio = 0.5 + HIDDEN_ALPHA_SCALE * dfRatio;
    5596        4126 :             if (dfAlphaRatio < 0.0)
    5597             :             {
    5598           0 :                 CPLError(CE_Warning, CPLE_AppDefined, "AlphaRation < 0: %lf",
    5599             :                          dfAlphaRatio);
    5600           0 :                 dfAlphaRatio *= -1;
    5601             :             }
    5602        8252 :             else if (dfAlphaRatio >= std::numeric_limits<GUInt32>::max() ||
    5603        4126 :                      std::isnan(dfAlphaRatio))
    5604             :             {
    5605           0 :                 CPLError(CE_Warning, CPLE_AppDefined,
    5606             :                          "AlphaRatio too large: %lf", dfAlphaRatio);
    5607           0 :                 dfAlphaRatio = std::numeric_limits<GUInt32>::max();
    5608             :             }
    5609        4126 :             const GUInt32 nAlphaRatio = static_cast<GUInt32>(dfAlphaRatio);
    5610        4126 :             const GUInt16 nAlphaRatioLow = nAlphaRatio & HIDDEN_ALPHA_HALF_MASK;
    5611        4126 :             const GUInt16 nAlphaRatioHigh =
    5612        4126 :                 nAlphaRatio >> HIDDEN_ALPHA_HALF_WIDTH;
    5613             :             // printf("alpha0=%f, alpha1=%f, alpha2=%f, dfRatio=%f, "/*ok*/
    5614             :             //        "nAlphaRatio = %u\n",
    5615             :             //        alpha0, alpha1, alpha2, dfRatio, nAlphaRatio);
    5616             : 
    5617        4126 :             CPLAssert(((poLine->getNumPoints() - 1 - 6) % 2) == 0);
    5618             : 
    5619      116967 :             for (int i = 1; i + 1 < poLine->getNumPoints(); i += 2)
    5620             :             {
    5621      112841 :                 GUInt16 nVal = 0xFFFF;
    5622             : 
    5623      112841 :                 double dfX = poLine->getX(i);
    5624      112841 :                 double dfY = poLine->getY(i);
    5625      112841 :                 if (i == 1)
    5626        4126 :                     nVal = nAlphaRatioLow;
    5627      108715 :                 else if (i == poLine->getNumPoints() - 2)
    5628        4126 :                     nVal = nAlphaRatioHigh;
    5629      112841 :                 OGRGF_SetHiddenValue(nVal, dfX, dfY);
    5630      112841 :                 poLine->setPoint(i, dfX, dfY);
    5631             : 
    5632      112841 :                 dfX = poLine->getX(i + 1);
    5633      112841 :                 dfY = poLine->getY(i + 1);
    5634      112841 :                 if (i == 1)
    5635        4126 :                     nVal = nAlphaRatioHigh;
    5636      108715 :                 else if (i == poLine->getNumPoints() - 2)
    5637        4126 :                     nVal = nAlphaRatioLow;
    5638      112841 :                 OGRGF_SetHiddenValue(nVal, dfX, dfY);
    5639      112841 :                 poLine->setPoint(i + 1, dfX, dfY);
    5640             :             }
    5641             :         }
    5642             :     }
    5643             : 
    5644        4225 :     if (bHasZ)
    5645         252 :         poLine->addPoint(x2, y2, z2);
    5646             :     else
    5647        3973 :         poLine->addPoint(x2, y2);
    5648             : 
    5649        4225 :     return poLine;
    5650             : }
    5651             : 
    5652             : /************************************************************************/
    5653             : /*                         OGRGF_FixAngle()                             */
    5654             : /************************************************************************/
    5655             : 
    5656             : // Fix dfAngle by offsets of 2 PI so that it lies between dfAngleStart and
    5657             : // dfAngleStop, whatever their respective order.
    5658      180139 : static double OGRGF_FixAngle(double dfAngleStart, double dfAngleStop,
    5659             :                              double dfAngle)
    5660             : {
    5661      180139 :     if (dfAngleStart < dfAngleStop)
    5662             :     {
    5663      127406 :         while (dfAngle <= dfAngleStart + 1e-8)
    5664       35091 :             dfAngle += 2 * M_PI;
    5665             :     }
    5666             :     else
    5667             :     {
    5668      120796 :         while (dfAngle >= dfAngleStart - 1e-8)
    5669       32972 :             dfAngle -= 2 * M_PI;
    5670             :     }
    5671      180139 :     return dfAngle;
    5672             : }
    5673             : 
    5674             : /************************************************************************/
    5675             : /*                         OGRGF_DetectArc()                            */
    5676             : /************************************************************************/
    5677             : 
    5678             : // #define VERBOSE_DEBUG_CURVEFROMLINESTRING
    5679             : 
    5680       12211 : static inline bool IS_ALMOST_INTEGER(double x)
    5681             : {
    5682       12211 :     const double val = fabs(x - floor(x + 0.5));
    5683       12211 :     return val < 1.0e-8;
    5684             : }
    5685             : 
    5686        3468 : static int OGRGF_DetectArc(const OGRLineString *poLS, int i,
    5687             :                            OGRCompoundCurve *&poCC, OGRCircularString *&poCS,
    5688             :                            OGRLineString *&poLSNew)
    5689             : {
    5690        3468 :     if (i + 3 >= poLS->getNumPoints())
    5691         305 :         return -1;
    5692             : 
    5693        6326 :     OGRPoint p0;
    5694        6326 :     OGRPoint p1;
    5695        6326 :     OGRPoint p2;
    5696        3163 :     poLS->getPoint(i, &p0);
    5697        3163 :     poLS->getPoint(i + 1, &p1);
    5698        3163 :     poLS->getPoint(i + 2, &p2);
    5699        3163 :     double R_1 = 0.0;
    5700        3163 :     double cx_1 = 0.0;
    5701        3163 :     double cy_1 = 0.0;
    5702        3163 :     double alpha0_1 = 0.0;
    5703        3163 :     double alpha1_1 = 0.0;
    5704        3163 :     double alpha2_1 = 0.0;
    5705        6319 :     if (!(OGRGeometryFactory::GetCurveParameters(
    5706             :               p0.getX(), p0.getY(), p1.getX(), p1.getY(), p2.getX(), p2.getY(),
    5707             :               R_1, cx_1, cy_1, alpha0_1, alpha1_1, alpha2_1) &&
    5708        3156 :           fabs(alpha2_1 - alpha0_1) < 2.0 * 20.0 / 180.0 * M_PI))
    5709             :     {
    5710          24 :         return -1;
    5711             :     }
    5712             : 
    5713        3139 :     const double dfDeltaAlpha10 = alpha1_1 - alpha0_1;
    5714        3139 :     const double dfDeltaAlpha21 = alpha2_1 - alpha1_1;
    5715             :     const double dfMaxDeltaAlpha =
    5716        3139 :         std::max(fabs(dfDeltaAlpha10), fabs(dfDeltaAlpha21));
    5717             :     GUInt32 nAlphaRatioRef =
    5718        3139 :         OGRGF_GetHiddenValue(p1.getX(), p1.getY()) |
    5719        3139 :         (OGRGF_GetHiddenValue(p2.getX(), p2.getY()) << HIDDEN_ALPHA_HALF_WIDTH);
    5720        3139 :     bool bFoundFFFFFFFFPattern = false;
    5721        3139 :     bool bFoundReversedAlphaRatioRef = false;
    5722        3139 :     bool bValidAlphaRatio = nAlphaRatioRef > 0 && nAlphaRatioRef < 0xFFFFFFFF;
    5723        3139 :     int nCountValidAlphaRatio = 1;
    5724             : 
    5725        3139 :     double dfScale = std::max(1.0, R_1);
    5726        3139 :     dfScale = std::max(dfScale, fabs(cx_1));
    5727        3139 :     dfScale = std::max(dfScale, fabs(cy_1));
    5728        3139 :     dfScale = pow(10.0, ceil(log10(dfScale)));
    5729        3139 :     const double dfInvScale = 1.0 / dfScale;
    5730             : 
    5731        3139 :     const int bInitialConstantStep =
    5732        3139 :         (fabs(dfDeltaAlpha10 - dfDeltaAlpha21) / dfMaxDeltaAlpha) < 1.0e-4;
    5733        3139 :     const double dfDeltaEpsilon =
    5734        3139 :         bInitialConstantStep ? dfMaxDeltaAlpha * 1e-4 : dfMaxDeltaAlpha / 10;
    5735             : 
    5736             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5737             :     printf("----------------------------\n");             /*ok*/
    5738             :     printf("Curve beginning at offset i = %d\n", i);      /*ok*/
    5739             :     printf("Initial alpha ratio = %u\n", nAlphaRatioRef); /*ok*/
    5740             :     /*ok*/ printf("Initial R = %.16g, cx = %.16g, cy = %.16g\n", R_1, cx_1,
    5741             :                   cy_1);
    5742             :     printf("dfScale = %f\n", dfScale);   /*ok*/
    5743             :     printf("bInitialConstantStep = %d, " /*ok*/
    5744             :            "fabs(dfDeltaAlpha10 - dfDeltaAlpha21)=%.8g, "
    5745             :            "dfMaxDeltaAlpha = %.8f, "
    5746             :            "dfDeltaEpsilon = %.8f (%.8f)\n",
    5747             :            bInitialConstantStep, fabs(dfDeltaAlpha10 - dfDeltaAlpha21),
    5748             :            dfMaxDeltaAlpha, dfDeltaEpsilon, 1.0 / 180.0 * M_PI);
    5749             : #endif
    5750        3139 :     int iMidPoint = -1;
    5751        3139 :     double dfLastValidAlpha = alpha2_1;
    5752             : 
    5753        3139 :     double dfLastLogRelDiff = 0;
    5754             : 
    5755        6278 :     OGRPoint p3;
    5756        3139 :     int j = i + 1;  // Used after for.
    5757      181655 :     for (; j + 2 < poLS->getNumPoints(); j++)
    5758             :     {
    5759      178615 :         poLS->getPoint(j, &p1);
    5760      178615 :         poLS->getPoint(j + 1, &p2);
    5761      178615 :         poLS->getPoint(j + 2, &p3);
    5762      178615 :         double R_2 = 0.0;
    5763      178615 :         double cx_2 = 0.0;
    5764      178615 :         double cy_2 = 0.0;
    5765      178615 :         double alpha0_2 = 0.0;
    5766      178615 :         double alpha1_2 = 0.0;
    5767      178615 :         double alpha2_2 = 0.0;
    5768             :         // Check that the new candidate arc shares the same
    5769             :         // radius, center and winding order.
    5770      178615 :         if (!(OGRGeometryFactory::GetCurveParameters(
    5771             :                 p1.getX(), p1.getY(), p2.getX(), p2.getY(), p3.getX(),
    5772             :                 p3.getY(), R_2, cx_2, cy_2, alpha0_2, alpha1_2, alpha2_2)))
    5773             :         {
    5774             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5775             :             printf("End of curve at j=%d\n : straight line", j); /*ok*/
    5776             : #endif
    5777          99 :             break;
    5778             :         }
    5779             : 
    5780      178607 :         const double dfRelDiffR = fabs(R_1 - R_2) * dfInvScale;
    5781      178607 :         const double dfRelDiffCx = fabs(cx_1 - cx_2) * dfInvScale;
    5782      178607 :         const double dfRelDiffCy = fabs(cy_1 - cy_2) * dfInvScale;
    5783             : 
    5784             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5785             :         printf("j=%d: R = %.16g, cx = %.16g, cy = %.16g, " /*ok*/
    5786             :                "rel_diff_R=%.8g rel_diff_cx=%.8g rel_diff_cy=%.8g\n",
    5787             :                j, R_2, cx_2, cy_2, dfRelDiffR, dfRelDiffCx, dfRelDiffCy);
    5788             : #endif
    5789             : 
    5790      178607 :         if (dfRelDiffR > 1.0e-7 || dfRelDiffCx > 1.0e-7 ||
    5791      178538 :             dfRelDiffCy > 1.0e-7 ||
    5792      178538 :             dfDeltaAlpha10 * (alpha1_2 - alpha0_2) < 0.0)
    5793             :         {
    5794             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5795             :             printf("End of curve at j=%d\n", j); /*ok*/
    5796             : #endif
    5797             :             break;
    5798             :         }
    5799             : 
    5800      178538 :         if (dfRelDiffR > 0.0 && dfRelDiffCx > 0.0 && dfRelDiffCy > 0.0)
    5801             :         {
    5802             :             const double dfLogRelDiff = std::min(
    5803      357046 :                 std::min(fabs(log10(dfRelDiffR)), fabs(log10(dfRelDiffCx))),
    5804      178523 :                 fabs(log10(dfRelDiffCy)));
    5805             :             // printf("dfLogRelDiff = %f, dfLastLogRelDiff=%f, "/*ok*/
    5806             :             //        "dfLogRelDiff - dfLastLogRelDiff=%f\n",
    5807             :             //         dfLogRelDiff, dfLastLogRelDiff,
    5808             :             //         dfLogRelDiff - dfLastLogRelDiff);
    5809      178523 :             if (dfLogRelDiff > 0.0 && dfLastLogRelDiff >= 8.0 &&
    5810           2 :                 dfLogRelDiff <= 8.0 && dfLogRelDiff < dfLastLogRelDiff - 2.0)
    5811             :             {
    5812             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5813             :                 printf("End of curve at j=%d. Significant different in " /*ok*/
    5814             :                        "relative error w.r.t previous points\n",
    5815             :                        j);
    5816             : #endif
    5817           2 :                 break;
    5818             :             }
    5819      178521 :             dfLastLogRelDiff = dfLogRelDiff;
    5820             :         }
    5821             : 
    5822      178536 :         const double dfStep10 = fabs(alpha1_2 - alpha0_2);
    5823      178536 :         const double dfStep21 = fabs(alpha2_2 - alpha1_2);
    5824             :         // Check that the angle step is consistent with the original step.
    5825      178536 :         if (!(dfStep10 < 2.0 * dfMaxDeltaAlpha &&
    5826      178536 :               dfStep21 < 2.0 * dfMaxDeltaAlpha))
    5827             :         {
    5828             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5829             :             printf("End of curve at j=%d: dfStep10=%f, dfStep21=%f, " /*ok*/
    5830             :                    "2*dfMaxDeltaAlpha=%f\n",
    5831             :                    j, dfStep10, dfStep21, 2 * dfMaxDeltaAlpha);
    5832             : #endif
    5833             :             break;
    5834             :         }
    5835             : 
    5836      178535 :         if (bValidAlphaRatio && j > i + 1 && (i % 2) != (j % 2))
    5837             :         {
    5838             :             const GUInt32 nAlphaRatioReversed =
    5839       87502 :                 (OGRGF_GetHiddenValue(p1.getX(), p1.getY())
    5840      175004 :                  << HIDDEN_ALPHA_HALF_WIDTH) |
    5841       87502 :                 (OGRGF_GetHiddenValue(p2.getX(), p2.getY()));
    5842             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5843             :             printf("j=%d, nAlphaRatioReversed = %u\n", /*ok*/
    5844             :                    j, nAlphaRatioReversed);
    5845             : #endif
    5846       87502 :             if (!bFoundFFFFFFFFPattern && nAlphaRatioReversed == 0xFFFFFFFF)
    5847             :             {
    5848        3067 :                 bFoundFFFFFFFFPattern = true;
    5849        3067 :                 nCountValidAlphaRatio++;
    5850             :             }
    5851       84435 :             else if (bFoundFFFFFFFFPattern && !bFoundReversedAlphaRatioRef &&
    5852             :                      nAlphaRatioReversed == 0xFFFFFFFF)
    5853             :             {
    5854       81341 :                 nCountValidAlphaRatio++;
    5855             :             }
    5856        3094 :             else if (bFoundFFFFFFFFPattern && !bFoundReversedAlphaRatioRef &&
    5857             :                      nAlphaRatioReversed == nAlphaRatioRef)
    5858             :             {
    5859        3067 :                 bFoundReversedAlphaRatioRef = true;
    5860        3067 :                 nCountValidAlphaRatio++;
    5861             :             }
    5862             :             else
    5863             :             {
    5864          27 :                 if (bInitialConstantStep &&
    5865          26 :                     fabs(dfLastValidAlpha - alpha0_1) >= M_PI &&
    5866             :                     nCountValidAlphaRatio > 10)
    5867             :                 {
    5868             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5869             :                     printf("End of curve at j=%d: " /*ok*/
    5870             :                            "fabs(dfLastValidAlpha - alpha0_1)=%f, "
    5871             :                            "nCountValidAlphaRatio=%d\n",
    5872             :                            j, fabs(dfLastValidAlpha - alpha0_1),
    5873             :                            nCountValidAlphaRatio);
    5874             : #endif
    5875          19 :                     if (dfLastValidAlpha - alpha0_1 > 0)
    5876             :                     {
    5877          21 :                         while (dfLastValidAlpha - alpha0_1 - dfMaxDeltaAlpha -
    5878          14 :                                    M_PI >
    5879          14 :                                -dfMaxDeltaAlpha / 10)
    5880             :                         {
    5881           7 :                             dfLastValidAlpha -= dfMaxDeltaAlpha;
    5882           7 :                             j--;
    5883             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5884             :                             printf(/*ok*/
    5885             :                                    "--> corrected as fabs(dfLastValidAlpha - "
    5886             :                                    "alpha0_1)=%f, j=%d\n",
    5887             :                                    fabs(dfLastValidAlpha - alpha0_1), j);
    5888             : #endif
    5889             :                         }
    5890             :                     }
    5891             :                     else
    5892             :                     {
    5893          36 :                         while (dfLastValidAlpha - alpha0_1 + dfMaxDeltaAlpha +
    5894          24 :                                    M_PI <
    5895          24 :                                dfMaxDeltaAlpha / 10)
    5896             :                         {
    5897          12 :                             dfLastValidAlpha += dfMaxDeltaAlpha;
    5898          12 :                             j--;
    5899             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5900             :                             printf(/*ok*/
    5901             :                                    "--> corrected as fabs(dfLastValidAlpha - "
    5902             :                                    "alpha0_1)=%f, j=%d\n",
    5903             :                                    fabs(dfLastValidAlpha - alpha0_1), j);
    5904             : #endif
    5905             :                         }
    5906             :                     }
    5907          19 :                     poLS->getPoint(j + 1, &p2);
    5908          19 :                     break;
    5909             :                 }
    5910             : 
    5911             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5912             :                 printf("j=%d, nAlphaRatioReversed = %u --> inconsistent " /*ok*/
    5913             :                        "values across arc. Don't use it\n",
    5914             :                        j, nAlphaRatioReversed);
    5915             : #endif
    5916           8 :                 bValidAlphaRatio = false;
    5917             :             }
    5918             :         }
    5919             : 
    5920             :         // Correct current end angle, consistently with start angle.
    5921      178516 :         dfLastValidAlpha = OGRGF_FixAngle(alpha0_1, alpha1_1, alpha2_2);
    5922             : 
    5923             :         // Try to detect the precise intermediate point of the
    5924             :         // arc circle by detecting irregular angle step
    5925             :         // This is OK if we don't detect the right point or fail
    5926             :         // to detect it.
    5927             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5928             :         printf("j=%d A(0,1)-maxDelta=%.8f A(1,2)-maxDelta=%.8f " /*ok*/
    5929             :                "x1=%.8f y1=%.8f x2=%.8f y2=%.8f x3=%.8f y3=%.8f\n",
    5930             :                j, fabs(dfStep10 - dfMaxDeltaAlpha),
    5931             :                fabs(dfStep21 - dfMaxDeltaAlpha), p1.getX(), p1.getY(),
    5932             :                p2.getX(), p2.getY(), p3.getX(), p3.getY());
    5933             : #endif
    5934      178516 :         if (j > i + 1 && iMidPoint < 0 && dfDeltaEpsilon < 1.0 / 180.0 * M_PI)
    5935             :         {
    5936      175045 :             if (fabs(dfStep10 - dfMaxDeltaAlpha) > dfDeltaEpsilon)
    5937           8 :                 iMidPoint = j + ((bInitialConstantStep) ? 0 : 1);
    5938      175037 :             else if (fabs(dfStep21 - dfMaxDeltaAlpha) > dfDeltaEpsilon)
    5939           4 :                 iMidPoint = j + ((bInitialConstantStep) ? 1 : 2);
    5940             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5941             :             if (iMidPoint >= 0)
    5942             :             {
    5943             :                 OGRPoint pMid;
    5944             :                 poLS->getPoint(iMidPoint, &pMid);
    5945             :                 printf("Midpoint detected at j = %d, iMidPoint = %d, " /*ok*/
    5946             :                        "x=%.8f y=%.8f\n",
    5947             :                        j, iMidPoint, pMid.getX(), pMid.getY());
    5948             :             }
    5949             : #endif
    5950             :         }
    5951             :     }
    5952             : 
    5953             :     // Take a minimum threshold of consecutive points
    5954             :     // on the arc to avoid false positives.
    5955        3139 :     if (j < i + 3)
    5956          61 :         return -1;
    5957             : 
    5958        3078 :     bValidAlphaRatio &= bFoundFFFFFFFFPattern && bFoundReversedAlphaRatioRef;
    5959             : 
    5960             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    5961             :     printf("bValidAlphaRatio=%d bFoundFFFFFFFFPattern=%d, " /*ok*/
    5962             :            "bFoundReversedAlphaRatioRef=%d\n",
    5963             :            static_cast<int>(bValidAlphaRatio),
    5964             :            static_cast<int>(bFoundFFFFFFFFPattern),
    5965             :            static_cast<int>(bFoundReversedAlphaRatioRef));
    5966             :     printf("alpha0_1=%f dfLastValidAlpha=%f\n", /*ok*/
    5967             :            alpha0_1, dfLastValidAlpha);
    5968             : #endif
    5969             : 
    5970        3078 :     if (poLSNew != nullptr)
    5971             :     {
    5972          11 :         double dfScale2 = std::max(1.0, fabs(p0.getX()));
    5973          11 :         dfScale2 = std::max(dfScale2, fabs(p0.getY()));
    5974             :         // Not strictly necessary, but helps having 'clean' lines without
    5975             :         // duplicated points.
    5976          11 :         constexpr double dfToleranceEps =
    5977             :             OGRCompoundCurve::DEFAULT_TOLERANCE_EPSILON;
    5978          11 :         if (fabs(poLSNew->getX(poLSNew->getNumPoints() - 1) - p0.getX()) >
    5979          12 :                 dfToleranceEps * dfScale2 ||
    5980           1 :             fabs(poLSNew->getY(poLSNew->getNumPoints() - 1) - p0.getY()) >
    5981           1 :                 dfToleranceEps * dfScale2)
    5982          10 :             poLSNew->addPoint(&p0);
    5983          11 :         if (poLSNew->getNumPoints() >= 2)
    5984             :         {
    5985          10 :             if (poCC == nullptr)
    5986           3 :                 poCC = new OGRCompoundCurve();
    5987          10 :             poCC->addCurveDirectly(poLSNew);
    5988             :         }
    5989             :         else
    5990           1 :             delete poLSNew;
    5991          11 :         poLSNew = nullptr;
    5992             :     }
    5993             : 
    5994        3078 :     if (poCS == nullptr)
    5995             :     {
    5996        3054 :         poCS = new OGRCircularString();
    5997        3054 :         poCS->addPoint(&p0);
    5998             :     }
    5999             : 
    6000        3078 :     OGRPoint *poFinalPoint = (j + 2 >= poLS->getNumPoints()) ? &p3 : &p2;
    6001             : 
    6002        3078 :     double dfXMid = 0.0;
    6003        3078 :     double dfYMid = 0.0;
    6004        3078 :     double dfZMid = 0.0;
    6005        3078 :     if (bValidAlphaRatio)
    6006             :     {
    6007             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6008             :         printf("Using alpha ratio...\n"); /*ok*/
    6009             : #endif
    6010        3067 :         double dfAlphaMid = 0.0;
    6011        3067 :         if (OGRGF_NeedSwithArcOrder(p0.getX(), p0.getY(), poFinalPoint->getX(),
    6012             :                                     poFinalPoint->getY()))
    6013             :         {
    6014             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6015             :             printf("Switching angles\n"); /*ok*/
    6016             : #endif
    6017        1575 :             dfAlphaMid = dfLastValidAlpha + nAlphaRatioRef *
    6018        1575 :                                                 (alpha0_1 - dfLastValidAlpha) /
    6019             :                                                 HIDDEN_ALPHA_SCALE;
    6020        1575 :             dfAlphaMid = OGRGF_FixAngle(alpha0_1, dfLastValidAlpha, dfAlphaMid);
    6021             :         }
    6022             :         else
    6023             :         {
    6024        1492 :             dfAlphaMid = alpha0_1 + nAlphaRatioRef *
    6025        1492 :                                         (dfLastValidAlpha - alpha0_1) /
    6026             :                                         HIDDEN_ALPHA_SCALE;
    6027             :         }
    6028             : 
    6029        3067 :         dfXMid = cx_1 + R_1 * cos(dfAlphaMid);
    6030        3067 :         dfYMid = cy_1 + R_1 * sin(dfAlphaMid);
    6031             : 
    6032        3067 :         if (poLS->getCoordinateDimension() == 3)
    6033             :         {
    6034           2 :             double dfLastAlpha = 0.0;
    6035           2 :             double dfLastZ = 0.0;
    6036           2 :             int k = i;  // Used after for.
    6037          48 :             for (; k < j + 2; k++)
    6038             :             {
    6039          48 :                 OGRPoint p;
    6040          48 :                 poLS->getPoint(k, &p);
    6041          48 :                 double dfAlpha = atan2(p.getY() - cy_1, p.getX() - cx_1);
    6042          48 :                 dfAlpha = OGRGF_FixAngle(alpha0_1, dfLastValidAlpha, dfAlpha);
    6043          48 :                 if (k > i &&
    6044          46 :                     ((dfAlpha < dfLastValidAlpha && dfAlphaMid < dfAlpha) ||
    6045          23 :                      (dfAlpha > dfLastValidAlpha && dfAlphaMid > dfAlpha)))
    6046             :                 {
    6047           2 :                     const double dfRatio =
    6048           2 :                         (dfAlphaMid - dfLastAlpha) / (dfAlpha - dfLastAlpha);
    6049           2 :                     dfZMid = (1 - dfRatio) * dfLastZ + dfRatio * p.getZ();
    6050           2 :                     break;
    6051             :                 }
    6052          46 :                 dfLastAlpha = dfAlpha;
    6053          46 :                 dfLastZ = p.getZ();
    6054             :             }
    6055           2 :             if (k == j + 2)
    6056           0 :                 dfZMid = dfLastZ;
    6057           2 :             if (IS_ALMOST_INTEGER(dfZMid))
    6058           2 :                 dfZMid = static_cast<int>(floor(dfZMid + 0.5));
    6059             :         }
    6060             : 
    6061             :         // A few rounding strategies in case the mid point was at "exact"
    6062             :         // coordinates.
    6063        3067 :         if (R_1 > 1e-5)
    6064             :         {
    6065             :             const bool bStartEndInteger =
    6066        9161 :                 IS_ALMOST_INTEGER(p0.getX()) && IS_ALMOST_INTEGER(p0.getY()) &&
    6067        9161 :                 IS_ALMOST_INTEGER(poFinalPoint->getX()) &&
    6068        3048 :                 IS_ALMOST_INTEGER(poFinalPoint->getY());
    6069        3061 :             if (bStartEndInteger &&
    6070        3048 :                 fabs(dfXMid - floor(dfXMid + 0.5)) / dfScale < 1e-4 &&
    6071        3029 :                 fabs(dfYMid - floor(dfYMid + 0.5)) / dfScale < 1e-4)
    6072             :             {
    6073        3029 :                 dfXMid = static_cast<int>(floor(dfXMid + 0.5));
    6074        3029 :                 dfYMid = static_cast<int>(floor(dfYMid + 0.5));
    6075             :                 // Sometimes rounding to closest is not best approach
    6076             :                 // Try neighbouring integers to look for the one that
    6077             :                 // minimize the error w.r.t to the arc center
    6078             :                 // But only do that if the radius is greater than
    6079             :                 // the magnitude of the delta that we will try!
    6080             :                 double dfBestRError =
    6081        3029 :                     fabs(R_1 - DISTANCE(dfXMid, dfYMid, cx_1, cy_1));
    6082             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6083             :                 printf("initial_error=%f\n", dfBestRError); /*ok*/
    6084             : #endif
    6085        3029 :                 int iBestX = 0;
    6086        3029 :                 int iBestY = 0;
    6087        3029 :                 if (dfBestRError > 0.001 && R_1 > 2)
    6088             :                 {
    6089           3 :                     int nSearchRadius = 1;
    6090             :                     // Extend the search radius if the arc circle radius
    6091             :                     // is much higher than the coordinate values.
    6092             :                     double dfMaxCoords =
    6093           3 :                         std::max(fabs(p0.getX()), fabs(p0.getY()));
    6094           3 :                     dfMaxCoords = std::max(dfMaxCoords, poFinalPoint->getX());
    6095           3 :                     dfMaxCoords = std::max(dfMaxCoords, poFinalPoint->getY());
    6096           3 :                     dfMaxCoords = std::max(dfMaxCoords, dfXMid);
    6097           3 :                     dfMaxCoords = std::max(dfMaxCoords, dfYMid);
    6098           3 :                     if (R_1 > dfMaxCoords * 1000)
    6099           3 :                         nSearchRadius = 100;
    6100           0 :                     else if (R_1 > dfMaxCoords * 10)
    6101           0 :                         nSearchRadius = 10;
    6102         606 :                     for (int iY = -nSearchRadius; iY <= nSearchRadius; iY++)
    6103             :                     {
    6104      121806 :                         for (int iX = -nSearchRadius; iX <= nSearchRadius; iX++)
    6105             :                         {
    6106      121203 :                             const double dfCandidateX = dfXMid + iX;
    6107      121203 :                             const double dfCandidateY = dfYMid + iY;
    6108      121203 :                             if (fabs(dfCandidateX - p0.getX()) < 1e-8 &&
    6109           0 :                                 fabs(dfCandidateY - p0.getY()) < 1e-8)
    6110           0 :                                 continue;
    6111      121203 :                             if (fabs(dfCandidateX - poFinalPoint->getX()) <
    6112      121203 :                                     1e-8 &&
    6113           0 :                                 fabs(dfCandidateY - poFinalPoint->getY()) <
    6114             :                                     1e-8)
    6115           0 :                                 continue;
    6116             :                             const double dfRError =
    6117      121203 :                                 fabs(R_1 - DISTANCE(dfCandidateX, dfCandidateY,
    6118      121203 :                                                     cx_1, cy_1));
    6119             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6120             :                             printf("x=%d y=%d error=%f besterror=%f\n", /*ok*/
    6121             :                                    static_cast<int>(dfXMid + iX),
    6122             :                                    static_cast<int>(dfYMid + iY), dfRError,
    6123             :                                    dfBestRError);
    6124             : #endif
    6125      121203 :                             if (dfRError < dfBestRError)
    6126             :                             {
    6127          20 :                                 iBestX = iX;
    6128          20 :                                 iBestY = iY;
    6129          20 :                                 dfBestRError = dfRError;
    6130             :                             }
    6131             :                         }
    6132             :                     }
    6133             :                 }
    6134        3029 :                 dfXMid += iBestX;
    6135        3029 :                 dfYMid += iBestY;
    6136             :             }
    6137             :             else
    6138             :             {
    6139             :                 // Limit the number of significant figures in decimal
    6140             :                 // representation.
    6141          32 :                 if (fabs(dfXMid) < 100000000.0)
    6142             :                 {
    6143          32 :                     dfXMid =
    6144          32 :                         static_cast<GIntBig>(floor(dfXMid * 100000000 + 0.5)) /
    6145             :                         100000000.0;
    6146             :                 }
    6147          32 :                 if (fabs(dfYMid) < 100000000.0)
    6148             :                 {
    6149          32 :                     dfYMid =
    6150          32 :                         static_cast<GIntBig>(floor(dfYMid * 100000000 + 0.5)) /
    6151             :                         100000000.0;
    6152             :                 }
    6153             :             }
    6154             :         }
    6155             : 
    6156             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6157             :         printf("dfAlphaMid=%f, x_mid = %f, y_mid = %f\n", /*ok*/
    6158             :                dfLastValidAlpha, dfXMid, dfYMid);
    6159             : #endif
    6160             :     }
    6161             : 
    6162             :     // If this is a full circle of a non-polygonal zone, we must
    6163             :     // use a 5-point representation to keep the winding order.
    6164        3089 :     if (p0.Equals(poFinalPoint) &&
    6165          11 :         !EQUAL(poLS->getGeometryName(), "LINEARRING"))
    6166             :     {
    6167             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6168             :         printf("Full circle of a non-polygonal zone\n"); /*ok*/
    6169             : #endif
    6170           1 :         poLS->getPoint((i + j + 2) / 4, &p1);
    6171           1 :         poCS->addPoint(&p1);
    6172           1 :         if (bValidAlphaRatio)
    6173             :         {
    6174           1 :             p1.setX(dfXMid);
    6175           1 :             p1.setY(dfYMid);
    6176           1 :             if (poLS->getCoordinateDimension() == 3)
    6177           0 :                 p1.setZ(dfZMid);
    6178             :         }
    6179             :         else
    6180             :         {
    6181           0 :             poLS->getPoint((i + j + 1) / 2, &p1);
    6182             :         }
    6183           1 :         poCS->addPoint(&p1);
    6184           1 :         poLS->getPoint(3 * (i + j + 2) / 4, &p1);
    6185           1 :         poCS->addPoint(&p1);
    6186             :     }
    6187             : 
    6188        3077 :     else if (bValidAlphaRatio)
    6189             :     {
    6190        3066 :         p1.setX(dfXMid);
    6191        3066 :         p1.setY(dfYMid);
    6192        3066 :         if (poLS->getCoordinateDimension() == 3)
    6193           2 :             p1.setZ(dfZMid);
    6194        3066 :         poCS->addPoint(&p1);
    6195             :     }
    6196             : 
    6197             :     // If we have found a candidate for a precise intermediate
    6198             :     // point, use it.
    6199          11 :     else if (iMidPoint >= 1 && iMidPoint < j)
    6200             :     {
    6201           3 :         poLS->getPoint(iMidPoint, &p1);
    6202           3 :         poCS->addPoint(&p1);
    6203             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6204             :         printf("Using detected midpoint...\n");                   /*ok*/
    6205             :         printf("x_mid = %f, y_mid = %f\n", p1.getX(), p1.getY()); /*ok*/
    6206             : #endif
    6207             :     }
    6208             :     // Otherwise pick up the mid point between both extremities.
    6209             :     else
    6210             :     {
    6211           8 :         poLS->getPoint((i + j + 1) / 2, &p1);
    6212           8 :         poCS->addPoint(&p1);
    6213             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6214             :         printf("Pickup 'random' midpoint at index=%d...\n", /*ok*/
    6215             :                (i + j + 1) / 2);
    6216             :         printf("x_mid = %f, y_mid = %f\n", p1.getX(), p1.getY()); /*ok*/
    6217             : #endif
    6218             :     }
    6219        3078 :     poCS->addPoint(poFinalPoint);
    6220             : 
    6221             : #ifdef VERBOSE_DEBUG_CURVEFROMLINESTRING
    6222             :     printf("----------------------------\n"); /*ok*/
    6223             : #endif
    6224             : 
    6225        3078 :     if (j + 2 >= poLS->getNumPoints())
    6226        3040 :         return -2;
    6227          38 :     return j + 1;
    6228             : }
    6229             : 
    6230             : /************************************************************************/
    6231             : /*                        curveFromLineString()                         */
    6232             : /************************************************************************/
    6233             : 
    6234             : /**
    6235             :  * \brief Try to convert a linestring approximating curves into a curve.
    6236             :  *
    6237             :  * This method can return a COMPOUNDCURVE, a CIRCULARSTRING or a LINESTRING.
    6238             :  *
    6239             :  * This method is the reverse of curveFromLineString().
    6240             :  *
    6241             :  * @param poLS handle to the geometry to convert.
    6242             :  * @param papszOptions options as a null-terminated list of strings.
    6243             :  *                     Unused for now. Must be set to NULL.
    6244             :  *
    6245             :  * @return the converted geometry (ownership to caller).
    6246             :  *
    6247             :  * @since GDAL 2.0
    6248             :  */
    6249             : 
    6250        3190 : OGRCurve *OGRGeometryFactory::curveFromLineString(
    6251             :     const OGRLineString *poLS, CPL_UNUSED const char *const *papszOptions)
    6252             : {
    6253        3190 :     OGRCompoundCurve *poCC = nullptr;
    6254        3190 :     OGRCircularString *poCS = nullptr;
    6255        3190 :     OGRLineString *poLSNew = nullptr;
    6256        3190 :     const int nLSNumPoints = poLS->getNumPoints();
    6257        3190 :     const bool bIsClosed = nLSNumPoints >= 4 && poLS->get_IsClosed();
    6258        3618 :     for (int i = 0; i < nLSNumPoints; /* nothing */)
    6259             :     {
    6260        3468 :         const int iNewI = OGRGF_DetectArc(poLS, i, poCC, poCS, poLSNew);
    6261        3468 :         if (iNewI == -2)
    6262        3040 :             break;
    6263         428 :         if (iNewI >= 0)
    6264             :         {
    6265          38 :             i = iNewI;
    6266          38 :             continue;
    6267             :         }
    6268             : 
    6269         390 :         if (poCS != nullptr)
    6270             :         {
    6271          14 :             if (poCC == nullptr)
    6272           5 :                 poCC = new OGRCompoundCurve();
    6273          14 :             poCC->addCurveDirectly(poCS);
    6274          14 :             poCS = nullptr;
    6275             :         }
    6276             : 
    6277         390 :         OGRPoint p;
    6278         390 :         poLS->getPoint(i, &p);
    6279         390 :         if (poLSNew == nullptr)
    6280             :         {
    6281         160 :             poLSNew = new OGRLineString();
    6282         160 :             poLSNew->addPoint(&p);
    6283             :         }
    6284             :         // Not strictly necessary, but helps having 'clean' lines without
    6285             :         // duplicated points.
    6286             :         else
    6287             :         {
    6288         230 :             double dfScale = std::max(1.0, fabs(p.getX()));
    6289         230 :             dfScale = std::max(dfScale, fabs(p.getY()));
    6290         230 :             if (bIsClosed && i == nLSNumPoints - 1)
    6291           7 :                 dfScale = 0;
    6292         230 :             constexpr double dfToleranceEps =
    6293             :                 OGRCompoundCurve::DEFAULT_TOLERANCE_EPSILON;
    6294         230 :             if (fabs(poLSNew->getX(poLSNew->getNumPoints() - 1) - p.getX()) >
    6295         239 :                     dfToleranceEps * dfScale ||
    6296           9 :                 fabs(poLSNew->getY(poLSNew->getNumPoints() - 1) - p.getY()) >
    6297           9 :                     dfToleranceEps * dfScale)
    6298             :             {
    6299         229 :                 poLSNew->addPoint(&p);
    6300             :             }
    6301             :         }
    6302             : 
    6303         390 :         i++;
    6304             :     }
    6305             : 
    6306        3190 :     OGRCurve *poRet = nullptr;
    6307             : 
    6308        3190 :     if (poLSNew != nullptr && poLSNew->getNumPoints() < 2)
    6309             :     {
    6310           1 :         delete poLSNew;
    6311           1 :         poLSNew = nullptr;
    6312           1 :         if (poCC != nullptr)
    6313             :         {
    6314           1 :             if (poCC->getNumCurves() == 1)
    6315             :             {
    6316           1 :                 poRet = poCC->stealCurve(0);
    6317           1 :                 delete poCC;
    6318           1 :                 poCC = nullptr;
    6319             :             }
    6320             :             else
    6321           0 :                 poRet = poCC;
    6322             :         }
    6323             :         else
    6324           0 :             poRet = poLS->clone();
    6325             :     }
    6326        3189 :     else if (poCC != nullptr)
    6327             :     {
    6328           7 :         if (poLSNew)
    6329           6 :             poCC->addCurveDirectly(poLSNew);
    6330             :         else
    6331           1 :             poCC->addCurveDirectly(poCS);
    6332           7 :         poRet = poCC;
    6333             :     }
    6334        3182 :     else if (poLSNew != nullptr)
    6335         142 :         poRet = poLSNew;
    6336        3040 :     else if (poCS != nullptr)
    6337        3039 :         poRet = poCS;
    6338             :     else
    6339           1 :         poRet = poLS->clone();
    6340             : 
    6341        3190 :     poRet->assignSpatialReference(poLS->getSpatialReference());
    6342             : 
    6343        3190 :     return poRet;
    6344             : }
    6345             : 
    6346             : /************************************************************************/
    6347             : /*                   createFromGeoJson( const char* )                   */
    6348             : /************************************************************************/
    6349             : 
    6350             : /**
    6351             :  * @brief Create geometry from GeoJson fragment.
    6352             :  * @param pszJsonString The GeoJSON fragment for the geometry.
    6353             :  * @param nSize (new in GDAL 3.4) Optional length of the string
    6354             :  *              if it is not null-terminated
    6355             :  * @return a geometry on success, or NULL on error.
    6356             :  * @since GDAL 2.3
    6357             :  */
    6358           5 : OGRGeometry *OGRGeometryFactory::createFromGeoJson(const char *pszJsonString,
    6359             :                                                    int nSize)
    6360             : {
    6361          10 :     CPLJSONDocument oDocument;
    6362           5 :     if (!oDocument.LoadMemory(reinterpret_cast<const GByte *>(pszJsonString),
    6363             :                               nSize))
    6364             :     {
    6365           3 :         return nullptr;
    6366             :     }
    6367             : 
    6368           2 :     return createFromGeoJson(oDocument.GetRoot());
    6369             : }
    6370             : 
    6371             : /************************************************************************/
    6372             : /*              createFromGeoJson( const CPLJSONObject& )               */
    6373             : /************************************************************************/
    6374             : 
    6375             : /**
    6376             :  * @brief Create geometry from GeoJson fragment.
    6377             :  * @param oJsonObject The JSONObject class describes the GeoJSON geometry.
    6378             :  * @return a geometry on success, or NULL on error.
    6379             :  * @since GDAL 2.3
    6380             :  */
    6381             : OGRGeometry *
    6382           2 : OGRGeometryFactory::createFromGeoJson(const CPLJSONObject &oJsonObject)
    6383             : {
    6384           2 :     if (!oJsonObject.IsValid())
    6385             :     {
    6386           0 :         return nullptr;
    6387             :     }
    6388             : 
    6389             :     // TODO: Move from GeoJSON driver functions create geometry here, and
    6390             :     // replace json-c specific json_object to CPLJSONObject
    6391           2 :     return OGRGeoJSONReadGeometry(
    6392           4 :         static_cast<json_object *>(oJsonObject.GetInternalHandle()));
    6393             : }

Generated by: LCOV version 1.14