LCOV - code coverage report
Current view: top level - third_party/fast_float - digit_comparison.h (source / functions) Hit Total Coverage
Test: gdal_filtered.info Lines: 0 194 0.0 %
Date: 2025-01-18 12:42:00 Functions: 0 9 0.0 %

          Line data    Source code
       1             : #ifndef FASTFLOAT_DIGIT_COMPARISON_H
       2             : #define FASTFLOAT_DIGIT_COMPARISON_H
       3             : 
       4             : #include <algorithm>
       5             : #include <cstdint>
       6             : #include <cstring>
       7             : #include <iterator>
       8             : 
       9             : #include "float_common.h"
      10             : #include "bigint.h"
      11             : #include "ascii_number.h"
      12             : 
      13             : namespace fast_float {
      14             : 
      15             : // 1e0 to 1e19
      16             : constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
      17             :                                                     10UL,
      18             :                                                     100UL,
      19             :                                                     1000UL,
      20             :                                                     10000UL,
      21             :                                                     100000UL,
      22             :                                                     1000000UL,
      23             :                                                     10000000UL,
      24             :                                                     100000000UL,
      25             :                                                     1000000000UL,
      26             :                                                     10000000000UL,
      27             :                                                     100000000000UL,
      28             :                                                     1000000000000UL,
      29             :                                                     10000000000000UL,
      30             :                                                     100000000000000UL,
      31             :                                                     1000000000000000UL,
      32             :                                                     10000000000000000UL,
      33             :                                                     100000000000000000UL,
      34             :                                                     1000000000000000000UL,
      35             :                                                     10000000000000000000UL};
      36             : 
      37             : // calculate the exponent, in scientific notation, of the number.
      38             : // this algorithm is not even close to optimized, but it has no practical
      39             : // effect on performance: in order to have a faster algorithm, we'd need
      40             : // to slow down performance for faster algorithms, and this is still fast.
      41             : template <typename UC>
      42             : fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
      43             : scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
      44           0 :   uint64_t mantissa = num.mantissa;
      45           0 :   int32_t exponent = int32_t(num.exponent);
      46           0 :   while (mantissa >= 10000) {
      47           0 :     mantissa /= 10000;
      48           0 :     exponent += 4;
      49             :   }
      50           0 :   while (mantissa >= 100) {
      51           0 :     mantissa /= 100;
      52           0 :     exponent += 2;
      53             :   }
      54           0 :   while (mantissa >= 10) {
      55           0 :     mantissa /= 10;
      56           0 :     exponent += 1;
      57             :   }
      58           0 :   return exponent;
      59             : }
      60             : 
      61             : // this converts a native floating-point number to an extended-precision float.
      62             : template <typename T>
      63             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
      64             : to_extended(T value) noexcept {
      65             :   using equiv_uint = typename binary_format<T>::equiv_uint;
      66           0 :   constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
      67           0 :   constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
      68           0 :   constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
      69             : 
      70           0 :   adjusted_mantissa am;
      71           0 :   int32_t bias = binary_format<T>::mantissa_explicit_bits() -
      72             :                  binary_format<T>::minimum_exponent();
      73             :   equiv_uint bits;
      74             : #if FASTFLOAT_HAS_BIT_CAST
      75             :   bits = std::bit_cast<equiv_uint>(value);
      76             : #else
      77           0 :   ::memcpy(&bits, &value, sizeof(T));
      78             : #endif
      79           0 :   if ((bits & exponent_mask) == 0) {
      80             :     // denormal
      81           0 :     am.power2 = 1 - bias;
      82           0 :     am.mantissa = bits & mantissa_mask;
      83             :   } else {
      84             :     // normal
      85           0 :     am.power2 = int32_t((bits & exponent_mask) >>
      86           0 :                         binary_format<T>::mantissa_explicit_bits());
      87           0 :     am.power2 -= bias;
      88           0 :     am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
      89             :   }
      90             : 
      91           0 :   return am;
      92             : }
      93             : 
      94             : // get the extended precision value of the halfway point between b and b+u.
      95             : // we are given a native float that represents b, so we need to adjust it
      96             : // halfway between b and b+u.
      97             : template <typename T>
      98             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
      99             : to_extended_halfway(T value) noexcept {
     100           0 :   adjusted_mantissa am = to_extended(value);
     101           0 :   am.mantissa <<= 1;
     102           0 :   am.mantissa += 1;
     103           0 :   am.power2 -= 1;
     104           0 :   return am;
     105             : }
     106             : 
     107             : // round an extended-precision float to the nearest machine float.
     108             : template <typename T, typename callback>
     109             : fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
     110             :                                                          callback cb) noexcept {
     111           0 :   int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
     112           0 :   if (-am.power2 >= mantissa_shift) {
     113             :     // have a denormal float
     114           0 :     int32_t shift = -am.power2 + 1;
     115           0 :     cb(am, std::min<int32_t>(shift, 64));
     116             :     // check for round-up: if rounding-nearest carried us to the hidden bit.
     117           0 :     am.power2 = (am.mantissa <
     118           0 :                  (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
     119           0 :                     ? 0
     120             :                     : 1;
     121           0 :     return;
     122             :   }
     123             : 
     124             :   // have a normal float, use the default shift.
     125           0 :   cb(am, mantissa_shift);
     126             : 
     127             :   // check for carry
     128           0 :   if (am.mantissa >=
     129           0 :       (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
     130           0 :     am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
     131           0 :     am.power2++;
     132             :   }
     133             : 
     134             :   // check for infinite: we could have carried to an infinite power
     135           0 :   am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
     136           0 :   if (am.power2 >= binary_format<T>::infinite_power()) {
     137           0 :     am.power2 = binary_format<T>::infinite_power();
     138           0 :     am.mantissa = 0;
     139             :   }
     140             : }
     141             : 
     142             : template <typename callback>
     143             : fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
     144             : round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
     145             :                        callback cb) noexcept {
     146           0 :   const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
     147           0 :   const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
     148           0 :   uint64_t truncated_bits = am.mantissa & mask;
     149           0 :   bool is_above = truncated_bits > halfway;
     150           0 :   bool is_halfway = truncated_bits == halfway;
     151             : 
     152             :   // shift digits into position
     153           0 :   if (shift == 64) {
     154           0 :     am.mantissa = 0;
     155             :   } else {
     156           0 :     am.mantissa >>= shift;
     157             :   }
     158           0 :   am.power2 += shift;
     159             : 
     160           0 :   bool is_odd = (am.mantissa & 1) == 1;
     161           0 :   am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
     162           0 : }
     163             : 
     164             : fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
     165             : round_down(adjusted_mantissa &am, int32_t shift) noexcept {
     166           0 :   if (shift == 64) {
     167           0 :     am.mantissa = 0;
     168             :   } else {
     169           0 :     am.mantissa >>= shift;
     170             :   }
     171           0 :   am.power2 += shift;
     172           0 : }
     173             : template <typename UC>
     174             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
     175             : skip_zeros(UC const *&first, UC const *last) noexcept {
     176             :   uint64_t val;
     177           0 :   while (!cpp20_and_in_constexpr() &&
     178           0 :          std::distance(first, last) >= int_cmp_len<UC>()) {
     179           0 :     ::memcpy(&val, first, sizeof(uint64_t));
     180           0 :     if (val != int_cmp_zeros<UC>()) {
     181           0 :       break;
     182             :     }
     183           0 :     first += int_cmp_len<UC>();
     184             :   }
     185           0 :   while (first != last) {
     186           0 :     if (*first != UC('0')) {
     187           0 :       break;
     188             :     }
     189           0 :     first++;
     190             :   }
     191           0 : }
     192             : 
     193             : // determine if any non-zero digits were truncated.
     194             : // all characters must be valid digits.
     195             : template <typename UC>
     196             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
     197             : is_truncated(UC const *first, UC const *last) noexcept {
     198             :   // do 8-bit optimizations, can just compare to 8 literal 0s.
     199             :   uint64_t val;
     200           0 :   while (!cpp20_and_in_constexpr() &&
     201           0 :          std::distance(first, last) >= int_cmp_len<UC>()) {
     202           0 :     ::memcpy(&val, first, sizeof(uint64_t));
     203           0 :     if (val != int_cmp_zeros<UC>()) {
     204           0 :       return true;
     205             :     }
     206           0 :     first += int_cmp_len<UC>();
     207             :   }
     208           0 :   while (first != last) {
     209           0 :     if (*first != UC('0')) {
     210           0 :       return true;
     211             :     }
     212           0 :     ++first;
     213             :   }
     214           0 :   return false;
     215             : }
     216             : template <typename UC>
     217             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
     218             : is_truncated(span<const UC> s) noexcept {
     219           0 :   return is_truncated(s.ptr, s.ptr + s.len());
     220             : }
     221             : 
     222             : template <typename UC>
     223             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
     224             : parse_eight_digits(const UC *&p, limb &value, size_t &counter,
     225             :                    size_t &count) noexcept {
     226           0 :   value = value * 100000000 + parse_eight_digits_unrolled(p);
     227           0 :   p += 8;
     228           0 :   counter += 8;
     229           0 :   count += 8;
     230           0 : }
     231             : 
     232             : template <typename UC>
     233             : fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
     234             : parse_one_digit(UC const *&p, limb &value, size_t &counter,
     235             :                 size_t &count) noexcept {
     236           0 :   value = value * 10 + limb(*p - UC('0'));
     237           0 :   p++;
     238           0 :   counter++;
     239           0 :   count++;
     240           0 : }
     241             : 
     242             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
     243             : add_native(bigint &big, limb power, limb value) noexcept {
     244           0 :   big.mul(power);
     245           0 :   big.add(value);
     246           0 : }
     247             : 
     248             : fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
     249             : round_up_bigint(bigint &big, size_t &count) noexcept {
     250             :   // need to round-up the digits, but need to avoid rounding
     251             :   // ....9999 to ...10000, which could cause a false halfway point.
     252             :   add_native(big, 10, 1);
     253           0 :   count++;
     254           0 : }
     255             : 
     256             : // parse the significant digits into a big integer
     257             : template <typename UC>
     258             : inline FASTFLOAT_CONSTEXPR20 void
     259           0 : parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
     260             :                size_t max_digits, size_t &digits) noexcept {
     261             :   // try to minimize the number of big integer and scalar multiplication.
     262             :   // therefore, try to parse 8 digits at a time, and multiply by the largest
     263             :   // scalar value (9 or 19 digits) for each step.
     264           0 :   size_t counter = 0;
     265           0 :   digits = 0;
     266           0 :   limb value = 0;
     267             : #ifdef FASTFLOAT_64BIT_LIMB
     268           0 :   size_t step = 19;
     269             : #else
     270             :   size_t step = 9;
     271             : #endif
     272             : 
     273             :   // process all integer digits.
     274           0 :   UC const *p = num.integer.ptr;
     275           0 :   UC const *pend = p + num.integer.len();
     276             :   skip_zeros(p, pend);
     277             :   // process all digits, in increments of step per loop
     278           0 :   while (p != pend) {
     279           0 :     while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
     280           0 :            (max_digits - digits >= 8)) {
     281             :       parse_eight_digits(p, value, counter, digits);
     282             :     }
     283           0 :     while (counter < step && p != pend && digits < max_digits) {
     284             :       parse_one_digit(p, value, counter, digits);
     285             :     }
     286           0 :     if (digits == max_digits) {
     287             :       // add the temporary value, then check if we've truncated any digits
     288           0 :       add_native(result, limb(powers_of_ten_uint64[counter]), value);
     289           0 :       bool truncated = is_truncated(p, pend);
     290           0 :       if (num.fraction.ptr != nullptr) {
     291           0 :         truncated |= is_truncated(num.fraction);
     292             :       }
     293           0 :       if (truncated) {
     294             :         round_up_bigint(result, digits);
     295             :       }
     296           0 :       return;
     297             :     } else {
     298           0 :       add_native(result, limb(powers_of_ten_uint64[counter]), value);
     299           0 :       counter = 0;
     300           0 :       value = 0;
     301             :     }
     302             :   }
     303             : 
     304             :   // add our fraction digits, if they're available.
     305           0 :   if (num.fraction.ptr != nullptr) {
     306           0 :     p = num.fraction.ptr;
     307           0 :     pend = p + num.fraction.len();
     308           0 :     if (digits == 0) {
     309             :       skip_zeros(p, pend);
     310             :     }
     311             :     // process all digits, in increments of step per loop
     312           0 :     while (p != pend) {
     313           0 :       while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
     314           0 :              (max_digits - digits >= 8)) {
     315             :         parse_eight_digits(p, value, counter, digits);
     316             :       }
     317           0 :       while (counter < step && p != pend && digits < max_digits) {
     318             :         parse_one_digit(p, value, counter, digits);
     319             :       }
     320           0 :       if (digits == max_digits) {
     321             :         // add the temporary value, then check if we've truncated any digits
     322           0 :         add_native(result, limb(powers_of_ten_uint64[counter]), value);
     323           0 :         bool truncated = is_truncated(p, pend);
     324           0 :         if (truncated) {
     325             :           round_up_bigint(result, digits);
     326             :         }
     327           0 :         return;
     328             :       } else {
     329           0 :         add_native(result, limb(powers_of_ten_uint64[counter]), value);
     330           0 :         counter = 0;
     331           0 :         value = 0;
     332             :       }
     333             :     }
     334             :   }
     335             : 
     336           0 :   if (counter != 0) {
     337           0 :     add_native(result, limb(powers_of_ten_uint64[counter]), value);
     338             :   }
     339             : }
     340             : 
     341             : template <typename T>
     342             : inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
     343           0 : positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
     344           0 :   FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
     345           0 :   adjusted_mantissa answer;
     346             :   bool truncated;
     347           0 :   answer.mantissa = bigmant.hi64(truncated);
     348           0 :   int bias = binary_format<T>::mantissa_explicit_bits() -
     349             :              binary_format<T>::minimum_exponent();
     350           0 :   answer.power2 = bigmant.bit_length() - 64 + bias;
     351             : 
     352           0 :   round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
     353           0 :     round_nearest_tie_even(
     354             :         a, shift,
     355           0 :         [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
     356           0 :           return is_above || (is_halfway && truncated) ||
     357           0 :                  (is_odd && is_halfway);
     358             :         });
     359             :   });
     360             : 
     361           0 :   return answer;
     362             : }
     363             : 
     364             : // the scaling here is quite simple: we have, for the real digits `m * 10^e`,
     365             : // and for the theoretical digits `n * 2^f`. Since `e` is always negative,
     366             : // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
     367             : // we then need to scale by `2^(f- e)`, and then the two significant digits
     368             : // are of the same magnitude.
     369             : template <typename T>
     370           0 : inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
     371             :     bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
     372           0 :   bigint &real_digits = bigmant;
     373           0 :   int32_t real_exp = exponent;
     374             : 
     375             :   // get the value of `b`, rounded down, and get a bigint representation of b+h
     376           0 :   adjusted_mantissa am_b = am;
     377             :   // gcc7 buf: use a lambda to remove the noexcept qualifier bug with
     378             :   // -Wnoexcept-type.
     379           0 :   round<T>(am_b,
     380           0 :            [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
     381             :   T b;
     382           0 :   to_float(false, am_b, b);
     383           0 :   adjusted_mantissa theor = to_extended_halfway(b);
     384           0 :   bigint theor_digits(theor.mantissa);
     385           0 :   int32_t theor_exp = theor.power2;
     386             : 
     387             :   // scale real digits and theor digits to be same power.
     388           0 :   int32_t pow2_exp = theor_exp - real_exp;
     389           0 :   uint32_t pow5_exp = uint32_t(-real_exp);
     390           0 :   if (pow5_exp != 0) {
     391           0 :     FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
     392             :   }
     393           0 :   if (pow2_exp > 0) {
     394           0 :     FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
     395           0 :   } else if (pow2_exp < 0) {
     396           0 :     FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
     397             :   }
     398             : 
     399             :   // compare digits, and use it to director rounding
     400           0 :   int ord = real_digits.compare(theor_digits);
     401           0 :   adjusted_mantissa answer = am;
     402           0 :   round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
     403           0 :     round_nearest_tie_even(
     404           0 :         a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
     405             :           (void)_;  // not needed, since we've done our comparison
     406             :           (void)__; // not needed, since we've done our comparison
     407           0 :           if (ord > 0) {
     408           0 :             return true;
     409           0 :           } else if (ord < 0) {
     410           0 :             return false;
     411             :           } else {
     412           0 :             return is_odd;
     413             :           }
     414             :         });
     415             :   });
     416             : 
     417           0 :   return answer;
     418             : }
     419             : 
     420             : // parse the significant digits as a big integer to unambiguously round the
     421             : // the significant digits. here, we are trying to determine how to round
     422             : // an extended float representation close to `b+h`, halfway between `b`
     423             : // (the float rounded-down) and `b+u`, the next positive float. this
     424             : // algorithm is always correct, and uses one of two approaches. when
     425             : // the exponent is positive relative to the significant digits (such as
     426             : // 1234), we create a big-integer representation, get the high 64-bits,
     427             : // determine if any lower bits are truncated, and use that to direct
     428             : // rounding. in case of a negative exponent relative to the significant
     429             : // digits (such as 1.2345), we create a theoretical representation of
     430             : // `b` as a big-integer type, scaled to the same binary exponent as
     431             : // the actual digits. we then compare the big integer representations
     432             : // of both, and use that to direct rounding.
     433             : template <typename T, typename UC>
     434             : inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
     435           0 : digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
     436             :   // remove the invalid exponent bias
     437           0 :   am.power2 -= invalid_am_bias;
     438             : 
     439           0 :   int32_t sci_exp = scientific_exponent(num);
     440           0 :   size_t max_digits = binary_format<T>::max_digits();
     441           0 :   size_t digits = 0;
     442           0 :   bigint bigmant;
     443           0 :   parse_mantissa(bigmant, num, max_digits, digits);
     444             :   // can't underflow, since digits is at most max_digits.
     445           0 :   int32_t exponent = sci_exp + 1 - int32_t(digits);
     446           0 :   if (exponent >= 0) {
     447           0 :     return positive_digit_comp<T>(bigmant, exponent);
     448             :   } else {
     449           0 :     return negative_digit_comp<T>(bigmant, am, exponent);
     450             :   }
     451             : }
     452             : 
     453             : } // namespace fast_float
     454             : 
     455             : #endif

Generated by: LCOV version 1.14