Line data Source code
1 : /*
2 : * This code implements the MD5 message-digest algorithm.
3 : * The algorithm is due to Ron Rivest. This code was
4 : * written by Colin Plumb in 1993, no copyright is claimed.
5 : * This code is in the public domain; do with it what you wish.
6 : *
7 : * Equivalent code is available from RSA Data Security, Inc.
8 : * This code has been tested against that, and is equivalent,
9 : * except that you don't need to include two pages of legalese
10 : * with every copy.
11 : *
12 : * To compute the message digest of a chunk of bytes, declare an
13 : * MD5Context structure, pass it to MD5Init, call MD5Update as
14 : * needed on buffers full of bytes, and then call MD5Final, which
15 : * will fill a supplied 16-byte array with the digest.
16 : */
17 :
18 : /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
19 : not require an integer type which is exactly 32 bits. This work
20 : draws on the changes for the same purpose by Tatu Ylonen
21 : <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
22 : that code, there is no copyright issue. I hereby disclaim
23 : copyright in any changes I have made; this code remains in the
24 : public domain. */
25 :
26 : /* Note regarding cvs_* namespace: this avoids potential conflicts
27 : with libraries such as some versions of Kerberos. No particular
28 : need to worry about whether the system supplies an MD5 library, as
29 : this file is only about 3k of object code. */
30 :
31 : /* Modified by E. Rouault, to fix :
32 : warning: argument to 'sizeof' in 'memset' call is the same expression as
33 : the destination; did you mean to dereference it? [-Wsizeof-pointer-memaccess]
34 : memset(ctx, 0, sizeof(ctx)); */ /* In case it is sensitive */
35 : /* at the end of cvs_MD5Final */
36 :
37 : #include "cpl_md5.h"
38 :
39 : #include "cpl_string.h"
40 :
41 2081060 : static GUInt32 getu32(const unsigned char *addr)
42 : {
43 2081060 : return ((((static_cast<GUInt32>(addr[3]) << 8) | addr[2]) << 8) | addr[1])
44 2081060 : << 8 |
45 2081060 : addr[0];
46 : }
47 :
48 339450 : static void putu32(GUInt32 data, unsigned char *addr)
49 : {
50 339450 : addr[0] = static_cast<unsigned char>(data & 0xff);
51 339450 : addr[1] = static_cast<unsigned char>((data >> 8) & 0xff);
52 339450 : addr[2] = static_cast<unsigned char>((data >> 16) & 0xff);
53 339450 : addr[3] = static_cast<unsigned char>((data >> 24) & 0xff);
54 339450 : }
55 :
56 : /*
57 : * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
58 : * initialization constants.
59 : */
60 56575 : void CPLMD5Init(struct CPLMD5Context *context)
61 : {
62 56575 : context->buf[0] = 0x67452301;
63 56575 : context->buf[1] = 0xefcdab89;
64 56575 : context->buf[2] = 0x98badcfe;
65 56575 : context->buf[3] = 0x10325476;
66 :
67 56575 : context->bits[0] = 0;
68 56575 : context->bits[1] = 0;
69 56575 : }
70 :
71 : /*
72 : * Update context to reflect the concatenation of another buffer full
73 : * of bytes.
74 : */
75 56862 : void CPLMD5Update(struct CPLMD5Context *context, const void *buf, size_t len)
76 : {
77 56862 : const GByte *pabyBuf = static_cast<const GByte *>(buf);
78 56862 : while (len > 0xffffffffU)
79 : {
80 0 : CPLMD5Update(context, pabyBuf, 0xffffffffU);
81 0 : pabyBuf += 0xffffffffU;
82 0 : len -= 0xffffffffU;
83 : }
84 :
85 : // Update bitcount
86 56862 : GUInt32 t = context->bits[0];
87 : // coverity[overflow_const]
88 56862 : const GUInt32 lenShifted = static_cast<GUInt32>(len) << 3U;
89 56862 : context->bits[0] = (t + lenShifted) & 0xffffffff;
90 56862 : if (context->bits[0] < t)
91 0 : context->bits[1]++; /* Carry from low to high */
92 56862 : context->bits[1] += static_cast<GUInt32>(len >> 29);
93 :
94 56862 : t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
95 :
96 : /* Handle any leading odd-sized chunks */
97 :
98 56862 : if (t)
99 : {
100 287 : unsigned char *p = context->in + t;
101 :
102 287 : t = 64 - t;
103 287 : if (len < t)
104 : {
105 24 : memcpy(p, pabyBuf, len);
106 24 : return;
107 : }
108 263 : memcpy(p, pabyBuf, t);
109 263 : CPLMD5Transform(context->buf, context->in);
110 263 : pabyBuf += t;
111 263 : len -= t;
112 : }
113 :
114 : /* Process data in 64-byte chunks */
115 :
116 126933 : while (len >= 64)
117 : {
118 70095 : memcpy(context->in, pabyBuf, 64);
119 70095 : CPLMD5Transform(context->buf, context->in);
120 70095 : pabyBuf += 64;
121 70095 : len -= 64;
122 : }
123 :
124 : /* Handle any remaining bytes of data. */
125 :
126 56838 : memcpy(context->in, pabyBuf, len);
127 : }
128 :
129 : /*
130 : * Final wrapup - pad to 64-byte boundary with the bit pattern
131 : * 1 0* (64-bit count of bits processed, MSB-first)
132 : */
133 56575 : void CPLMD5Final(unsigned char digest[16], struct CPLMD5Context *context)
134 : {
135 : /* Compute number of bytes mod 64 */
136 56575 : unsigned count = static_cast<unsigned>((context->bits[0] >> 3) & 0x3F);
137 :
138 : /* Set the first char of padding to 0x80. This is safe since there is
139 : always at least one byte free */
140 56575 : unsigned char *p = context->in + count;
141 56575 : *p++ = 0x80;
142 :
143 : /* Bytes of padding needed to make 64 bytes */
144 56575 : count = 64 - 1 - count;
145 :
146 : /* Pad out to 56 mod 64 */
147 56575 : if (count < 8)
148 : {
149 : /* Two lots of padding: Pad the first block to 64 bytes */
150 3133 : memset(p, 0, count);
151 3133 : CPLMD5Transform(context->buf, context->in);
152 :
153 : /* Now fill the next block with 56 bytes */
154 3133 : memset(context->in, 0, 56);
155 : }
156 : else
157 : {
158 : /* Pad block to 56 bytes */
159 53442 : memset(p, 0, count - 8);
160 : }
161 :
162 : /* Append length in bits and transform */
163 56575 : putu32(context->bits[0], context->in + 56);
164 56575 : putu32(context->bits[1], context->in + 60);
165 :
166 56575 : CPLMD5Transform(context->buf, context->in);
167 56575 : putu32(context->buf[0], digest);
168 56575 : putu32(context->buf[1], digest + 4);
169 56575 : putu32(context->buf[2], digest + 8);
170 56575 : putu32(context->buf[3], digest + 12);
171 56575 : memset(context, 0, sizeof(*context)); /* In case it is sensitive */
172 56575 : }
173 :
174 : #ifndef ASM_MD5
175 :
176 : /* The four core functions - F1 is optimized somewhat */
177 :
178 : /* #define F1(x, y, z) (x & y | ~x & z) */
179 : #define F1(x, y, z) (z ^ (x & (y ^ z)))
180 : #define F2(x, y, z) F1(z, x, y)
181 : #define F3(x, y, z) (x ^ y ^ z)
182 : #define F4(x, y, z) (y ^ (x | ~z))
183 :
184 : /* This is the central step in the MD5 algorithm. */
185 : #define MD5STEP(f, w, x, y, z, data, s) \
186 : (w += f(x, y, z) + data, w &= 0xffffffff, w = w << s | w >> (32 - s), \
187 : w += x)
188 :
189 : /*
190 : * The core of the MD5 algorithm, this alters an existing MD5 hash to
191 : * reflect the addition of 16 longwords of new data. MD5Update blocks
192 : * the data and converts bytes into longwords for this routine.
193 : */
194 : CPL_NOSANITIZE_UNSIGNED_INT_OVERFLOW
195 130066 : void CPLMD5Transform(GUInt32 buf[4], const unsigned char inraw[64])
196 : {
197 : GUInt32 in[16];
198 2211120 : for (int i = 0; i < 16; ++i)
199 2081060 : in[i] = getu32(inraw + 4 * i);
200 :
201 130066 : GUInt32 a = buf[0];
202 130066 : GUInt32 b = buf[1];
203 130066 : GUInt32 c = buf[2];
204 130066 : GUInt32 d = buf[3];
205 :
206 130066 : MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
207 130066 : MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
208 130066 : MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
209 130066 : MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
210 130066 : MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
211 130066 : MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
212 130066 : MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
213 130066 : MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
214 130066 : MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
215 130066 : MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
216 130066 : MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
217 130066 : MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
218 130066 : MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
219 130066 : MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
220 130066 : MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
221 130066 : MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
222 :
223 130066 : MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
224 130066 : MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
225 130066 : MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
226 130066 : MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
227 130066 : MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
228 130066 : MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
229 130066 : MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
230 130066 : MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
231 130066 : MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
232 130066 : MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
233 130066 : MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
234 130066 : MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
235 130066 : MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
236 130066 : MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
237 130066 : MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
238 130066 : MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
239 :
240 130066 : MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
241 130066 : MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
242 130066 : MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
243 130066 : MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
244 130066 : MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
245 130066 : MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
246 130066 : MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
247 130066 : MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
248 130066 : MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
249 130066 : MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
250 130066 : MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
251 130066 : MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
252 130066 : MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
253 130066 : MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
254 130066 : MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
255 130066 : MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
256 :
257 130066 : MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
258 130066 : MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
259 130066 : MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
260 130066 : MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
261 130066 : MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
262 130066 : MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
263 130066 : MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
264 130066 : MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
265 130066 : MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
266 130066 : MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
267 130066 : MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
268 130066 : MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
269 130066 : MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
270 130066 : MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
271 130066 : MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
272 130066 : MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
273 :
274 130066 : buf[0] += a;
275 130066 : buf[1] += b;
276 130066 : buf[2] += c;
277 130066 : buf[3] += d;
278 130066 : }
279 : #endif
280 :
281 : /**
282 : * @brief CPLMD5String Transform string to MD5 hash
283 : * @param pszText Text to transform
284 : * @return MD5 hash string
285 : */
286 55876 : const char *CPLMD5String(const char *pszText)
287 : {
288 : struct CPLMD5Context context;
289 55876 : CPLMD5Init(&context);
290 55876 : CPLMD5Update(&context, pszText, strlen(pszText));
291 : unsigned char hash[16];
292 55876 : CPLMD5Final(hash, &context);
293 :
294 55876 : constexpr char tohex[] = "0123456789abcdef";
295 : char hhash[33];
296 949892 : for (int i = 0; i < 16; ++i)
297 : {
298 894016 : hhash[i * 2] = tohex[(hash[i] >> 4) & 0xf];
299 894016 : hhash[i * 2 + 1] = tohex[hash[i] & 0xf];
300 : }
301 55876 : hhash[32] = '\0';
302 111752 : return CPLSPrintf("%s", hhash);
303 : }
|